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Hyperthermia

• Heating tumor to 40-43°C for 1h
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• Tumor-selective radiosensitization
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Hyperthermia

• Heating tumor to 40-43°C for 1h

• Combined with radiotherapy and/or chemotherapy

• Tumor-selective radiosensitization

• Heating tumor to 80-100°C for few minutes

• Direct tissue ablation

Thermal therapy

Thermal ablation



Van der Zee et al Int J Hyperthermia 2008;24:111-22

Thermal therapy

Heated volume 
differs strongly
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Thermal therapy

Heated volume 
differs strongly

• 1-4 cm

• 10-20 cm

• Whole body
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• Bio-heat equation
• Thermal properties of tissues
• Vascular cooling
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• Pennes bio-heat equation
– Describes heat transport in tissue by
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tissue

• A volume of non-perfused material

Heat transport by conduction



tissue

• Applicator depositing power
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Heat transport by conduction



• Division into subvolumes: voxels
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P

Heat transport by conduction



• heat balance for one voxel
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• Temperature change 
• Power density P
• Conduction
• Perfusion Wb
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Hand et al, Int J Hyperthermia 5: 421-428 (1989) 

Temperature rise after 60 sec power pulse indicative for P distribution

Power pulse
procedure prescribed

in 1989 ESHO
QA guidelines
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Hand et al, Int J Hyperthermia 5: 421-428 (1989) 
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• Bio-heat equation
– Different models used

• Pennes bio heat equation
• Effective conductivity
• Discrete vessels

Review: Kok et al. Int J Hyperthermia 29: 336 – 345 (2013)

Discussed later
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• Thermal properties of tissues
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Relevant thermal properties:
• Conduction
• Blood flow

Thermal properties of tissue
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Blood flow depends on:
• Tissue type
• Detailed data in 

recent reviews

Said Camilleri et al, Sensors (Basel). 2022;22:3894

Thermal properties of tissue

ωt (kg/s/m3) of healthy and tumour breast tissue.

Fibroglandular Fat  Tumour Tissue
Min. Max. Min. Max. Min. Max.
0.189-0.754 0.014-8.798 0.530-22.260



Blood flow depends on:
• Tissue type
• Detailed data in 

recent reviews
– ITIS database popular

Thermal properties of tissue

https://itis.swiss/virtual-population/tissue-properties/database/



Blood flow depends on:
• Tissue type
• Temperature

Song Cancer Res vol 44 4721s-4730s 1984
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Thermal properties of tissue

published perfusion data 
are generally valid under
normothermic conditions



Blood flow depends on:
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• Temperature

Song Cancer Res vol 44 4721s-4730s 1984
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Blood flow depends on:
• Tissue type
• Temperature
• Time

Van Haaren et al, Int J Hyperthermia 24: 663-674 (2008) 
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Blood flow depends on:
• Tissue type
• Temperature
• Time

Van Haaren et al, Int J Hyperthermia 24: 663-674 (2008) 

25% decrease in Tstst
=

25% increase in Wb

Thermal properties of tissue



• Bio-heat equation
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• Vascular cooling
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Impact of blood flow depends on vessel size:
• Small vessels: 

– (almost) in thermal equilibrium with tissue
– Modelled collectively with bio-heat equation

• Pennes bio-heat equation
• Effective tissue conductivity

Vascular cooling
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Cold track along large, unequilibrated vessels

Lagendijk Phys Med Biol 27 17-23 (1982) 
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Cold track along large, unequilibrated vessels

Lagendijk Phys Med Biol 27 17-23 (1982) 

Thermal equilibration length
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Thermal equilibration length

Crezee and Lagendijk Phys Med Biol 37 1321-1337 (1992) 
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Thermal equilibration length

Crezee and Lagendijk Phys Med Biol 37 1321-1337 (1992) 
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Vascular cooling
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Crezee and Lagendijk Phys Med Biol 37 1321-1337 (1992) 

not in thermal
equilibrium

modelled
individually

Vascular cooling

Discrete 
vessels



Thermal equilibration length

Crezee and Lagendijk Phys Med Biol 37 1321-1337 (1992) 
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Thermal equilibration length

Crezee and Lagendijk Phys Med Biol 37 1321-1337 (1992) 

near thermal
equilibrium

Vascular cooling



Thermal equilibration length

Crezee and Lagendijk Phys Med Biol 37 1321-1337 (1992) 

near thermal
equilibrium

continuum
model

Vascular cooling

Pennes 
or keff
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Impact of blood flow depends on vessel size:
• Small vessels: 

– (almost) in thermal equilibrium with tissue
– Modelled collectively with bio-heat equation

• Large vessels: 
– Arteries cause cold tracks in tissue
– Modelled individually

Pre-heat arteries by heating
Large margin around tumor

Vascular cooling



Preheating arterial blood flow
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Preheating arterial blood flow

Cool arterial blood

Power

tumor

Temperature >40°C

no enhancement
radiotherapy in
normal tissue 
if T<45°C

margin

Vascular cooling



Example: locoregional hyperthermia of prostate

Van den Berg et al. Phys Med Biol. 2006; 51: 809-825

Vascular cooling



• Bio-heat equation
• Thermal properties of tissues
• Vascular cooling
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• Bio-heat equation
• Thermal properties of tissues
• Vascular cooling

Conclusion: bio heat transfer is a complex and challenging
topic, with limited accuracy for Pennes equation

Heat transport in tissue



• Bio-heat equation
• Thermal properties of tissues
• Vascular cooling

Tomorrow: 
modeling heat transport in treatment planning

Heat transport in tissue



Hans Crezee

Questions?
h.crezee@amsterdamumc.nl
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