

UNIVERSITY OF AMSTERDAM

heat transport in tissue bioheat equation thermal properties vascular cooling

Hans Crezee

¹Department of Radiation Oncology Amsterdam University Medical Centers Location University of Amsterdam ²Cancer Center Amsterdam The Netherlands

ESHO school 2022, 12-13 September 2022, , Sweden

Hyperthermia

- Heating tumor to 40-43°C for 1h
- Combined with radiotherapy and/or chemotherapy
- Tumor-selective radiosensitization

Hyperthermia

- Heating tumor to 40-43°C for 1h
- Combined with radiotherapy and/or chemotherapy
- Tumor-selective radiosensitization

Thermal ablation

- Heating tumor to 80-100°C for few minutes
- Direct tissue ablation

HYPERTHERMIA TECHNIQUES LOCAL EXTERNAL LOCAL INVASIVE - radiative superficial deep Intraluminal Interstitial - capacitive superficial deep PERFUSION WHOLE BODY extracorporeal circulation 4

Heated volume differs strongly

Van der Zee et al Int J Hyperthermia 2008;24:111-22

Heated volume differs strongly

• 1-4 cm

Kok et al Int J Hyperthermia 2020;37(1):711-741

Heated volume differs strongly

- 1-4 cm
- 10-20 cm

Kok et al Int J Hyperthermia 2020;37(1):711-741

Kok et al Int J Hyperthermia 2020;37(1):711-741

- Bio-heat equation
- Thermal properties of tissues
- Vascular cooling

- Bio-heat equation
 - Different models used
 - Pennes bio heat equation
 - Effective conductivity
 - Discrete vessels

- Bio-heat equation
 - Different models used
 - Pennes bio heat equation
 - Effective conductivity
 - Discrete vessels

- Pennes bio-heat equation
 - Describes heat transport in tissue by
 - Conduction
 - Blood flow

- Pennes bio-heat equation
 - Describes heat transport in tissue by

• Blood flow

• A volume of non-perfused material

• Applicator depositing power

• Division into subvolumes: voxels

heat balance for one voxel

Energy balance equation

• Temperature change

- ho tissue density
- c tissue heat capacity

$$c\rho \frac{\partial T}{\partial t} = \nabla \cdot \left(k\nabla T\right) + P$$

Temperature change

• Power density P

Temperature change $c\rho \frac{\partial T}{\partial t}$

- Power density P •
- Conduction $\nabla \cdot (k \nabla T)$

k tissue conductivity

$$c\rho \frac{\partial T}{\partial t} = \nabla \cdot \left(k \nabla T \right) + P$$

Temperature change

- Power density P
- Conduction $\nabla \cdot (k \nabla T)$

Pennes HH, J Appl Physiol. 1 93-122 (1948)

Perfusion is the dominant heat removal mechanism

Perfusion is the dominant heat removal mechanism

Perfusion is the dominant heat removal mechanism

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

This equation simplifies interpretation of data:

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

This equation simplifies interpretation of data:

At the start of treatment

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

This equation simplifies interpretation of data:

- At the start of treatment
- During steady state

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

This equation simplifies interpretation of data:

- At the start of treatment
- During steady state
- After power off

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

At the start of treatment $T = T_{art}$:

time

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

At the start of treatment $T = T_{art}$:

time

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

At the start of treatment $T = T_{art}$:

$$c\rho \frac{\partial T}{\partial t} = P$$

At start of treatment: time rate of temperature rise is proportional to absorbed power *P*

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

At the start of treatment $T = T_{art}$:

Amsterdam UMC

University Medical Centers

At start of treatment: time rate of temperature rise is proportional to absorbed power *P*

Temperature rise after 60 sec power pulse indicative for *P* distribution

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

At the start of treatment $T = T_{art}$:

Amsterdam UMC

University Medical Centers

At start of treatment: rate of temperature rise is proportional to absorbed power *P*

Temperature rise after 60 sec power pulse indicative for *P* distribution

6. Characterization of applicators

6.1. The effective field size (EFS) of an applicator is defined by the 50% SAR contour measured at a depth of 10 mm from the surface of a plane homogeneous phantom with the dielectric properties of muscle. The penetration depth (PD) is defined as the distance below 10 mm at which the SAR is 50% of that at 10 mm depth. Measurements to determine the penetration depth must be made from the position of maximum SAR at 10 mm depth.

6.2. Both EFS and PD must be measured with the applicator arranged as the 'clinical set-up', including a bolus if appropriate. If a bolus is used, then its temperature should be equal to the initial temperature of the phantom.

6.3. EFS and PD should be determined by measuring the changes in temperature resulting from a brief pulse of high power. If non-perturbing E-field probes, thermographic imaging or liquid-crystal sheet imaging are used to determine SAR distributions, such measurements should be corroborated by measurements obtained using the power pulse technique.

6.4. If either a radiofrequency capacitive technique or a multi-element array of applicators is used, the EFS can depend critically on the particular geometry involved. Additional characterization of these techniques should be attempted using geometrically realistic phantoms.

6.5. When using the power pulse technique, measurements to determine the EFS and PD must be made within 60 seconds of the start of the pulse to minimize artefacts caused by thermal conduction within the phantom.

6.6. The plane muscle phantom used for determining EFS and PD must be 10 cm thick and must extend at least 5 cm beyond the physical dimensions of the applicator and bolus. In the case of radiofrequency capacitive electrodes, the thickness of the phantom should be equal to that of the tissue between the electrodes in the clinical set-up.

Temperature rise after 60 sec power pulse indicative for P distribution

Hand et al, Int J Hyperthermia 5: 421-428 (1989)

Power pulse procedure prescribed in 1989 ESHO QA guidelines
$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

At steady state

$$c\rho \frac{\partial T}{\partial t} = 0$$
:

time

$$c_{p} = -c_{b}W_{b}(T - T_{art}) + P$$

At steady state

$$c\rho \frac{\partial T}{\partial t} = 0$$
:

time

$$c_{p} \frac{\partial T}{\partial t} = -c_{b}W_{b}(T - T_{art}) + P$$

At steady sta

te
$$c\rho \frac{\partial T}{\partial t} = 0$$
:

$$c_b W_b (T - T_{art}) = P$$

During steady state: \Box_{time} Temperature rise *T*-*T_{art}* is proportional to absorbed power *P*

At steady stat

ate
$$c\rho \frac{\partial T}{\partial t} = 0$$
:

 $c_b W_b (T - T_{art}) = P$

Amsterdam UMC

University Medical Centers

During steady state: $_{time}$ Temperature rise *T*-*T*_{art} is proportional to absorbed power *P*

Absorbed power distribution indicative for temperature distribution

measurement of Absorbed Power distribution prescribed to characterise applicators in 1989 ESHO QA guidelines

6. Characterization of applicators

6.1. The effective field size (EFS) of an applicator is defined by the 50% SAR contour measured at a depth of 10 mm from the surface of a plane homogeneous phantom with the dielectric properties of muscle. The penetration depth (PD) is defined as the distance below 10 mm at which the SAR is 50% of that at 10 mm depth. Measurements to determine the penetration depth must be made from the position of maximum SAR at 10 mm depth.

6.2. Both EFS and PD must be measured with the applicator arranged as the 'clinical set-up', including a bolus if appropriate. If a bolus is used, then its temperature should be equal to the initial temperature of the phantom.

6.3. EFS and PD should be determined by measuring the changes in temperature resulting from a brief pulse of high power. If non-perturbing E-field probes, thermographic imaging or liquid-crystal sheet imaging are used to determine SAR distributions, such measurements should be corroborated by measurements obtained using the power pulse technique.

6.4. If either a radiofrequency capacitive technique or a multi-element array of applicators is used, the EFS can depend critically on the particular geometry involved. Additional characterization of these techniques should be attempted using geometrically realistic phantoms.

6.5. When using the power pulse technique, measurements to determine the EFS and PD must be made within 60 seconds of the start of the pulse to minimize artefacts caused by thermal conduction within the phantom.

6.6. The plane muscle phantom used for determining EFS and PD must be 10 cm thick and must extend at least 5 cm beyond the physical dimensions of the applicator and bolus. In the case of radiofrequency capacitive electrodes, the thickness of the phantom should be equal to that of the tissue between the electrodes in the clinical set-up.

Absorbed power distribution indicative for temperature distribution

Hand et al, Int J Hyperthermia 5: 421-428 (1989)

 $W_b = \frac{\rho_t c_t}{c_b \tau}$ Perfusion W_b can be derived from decay time

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

This simple equation allows us to derive parameters from measured *T* data:

- power density P
- tissue perfusion W_b

$$c\rho \frac{\partial T}{\partial t} = -c_b W_b (T - T_{art}) + P$$

This simple equation allows us to derive parameters from measured T data:

- power density P

• tissue perfusion W_b
But is this correct?

- Bio-heat equation
 - Different models used
 - Pennes bio heat equation
 - Effective conductivity
 - Discrete vessels

Review: Kok et al. Int J Hyperthermia 29: 336 – 345 (2013)

- Bio-heat equation
 - Different models used
 - Pennes bio heat equation
 - Effective conductivity
 - Discrete vessels

Review: Kok et al. Int J Hyperthermia 29: 336 – 345 (2013)

$$c\rho \frac{\partial T}{\partial t} = \nabla \cdot \left(k\nabla T\right) - c_b W_b \left(T - T_{art}\right) + P$$

- $T_{art} = 37^{\circ}C$
- Validity assumption:
 - small heated volume \bigcirc

$$c\rho \frac{\partial T}{\partial t} = \nabla \cdot \left(k\nabla T\right) - c_b W_b \left(T - T_{art}\right) + P$$

- $T_{art} = 37^{\circ}C$
- Validity assumption:
 - small heated volume 😊
 - large heated volume 😕

$$c\rho \frac{\partial T}{\partial t} = \nabla \cdot \left(k\nabla T\right) + P$$

- Temperature change
- $c\rho \frac{\partial T}{\partial t}$
- Power density P
- Conduction $\nabla \cdot (k \nabla T)$

Crezee et al Phys Med Biol 39 813-822 (1994)

Crezee et al Phys Med Biol 39 813-822 (1994)

- Bio-heat equation
 - Different models used
 - Pennes bio heat equation
 - Effective conductivity

• Discrete vessels

Review: Kok et al. Int J Hyperthermia 29: 336 – 345 (2013)

- Bio-heat equation
 - Different models used
 - Pennes bio heat equation
 - Effective conductivity

• Discrete vessels

Discussed later

Review: Kok et al. Int J Hyperthermia 29: 336 – 345 (2013)

- Bio-heat equation
- Thermal properties of tissues
- Vascular cooling

Relevant thermal properties:

- Conduction
- Blood flow

Thermal conduction:

ESHO task group committee *Treatment planning and modelling in hyperthermia* (1992)

Thermal conduction:

ESHO task group committee *Treatment planning and modelling in hyperthermia* (1992)

Blood flow depends on:

• Tissue type

Blood flow depends on:

ESHO task group committee Treatment planning and modelling in hyperthermia (1992)

Blood flow depends on:

ESHO task group committee Treatment planning and modelling in hyperthermia (1992)

Blood flow depends on:

- Tissue type
- Detailed data in recent reviews

 ω_t (kg/s/m³) of healthy and tumour breast tissue.

Fibroglandular	Fat	Tumour Tissue
Min. Max.	Min. Max.	Min. Max.
0.189-0.754	0.014-8.798	0.530-22.260

Amsterdam UMC

University Medical Centers

Blood flow depends on:

- Tissue type
- Detailed data in recent reviews
 - ITIS database popular

https://itis.swiss/virtual-population/tissue-properties/database/

Song Cancer Res vol 44 4721s-4730s 1984

Song Cancer Res vol 44 4721s-4730s 1984

Song Cancer Res vol 44 4721s-4730s 1984

Song Cancer Res vol 44 4721s-4730s 1984

Blood flow depends on:

- Tissue type
- Temperature
- Time

Blood flow depends on:

- Tissue type
- Temperature
- Time

- Bio-heat equation
- Thermal properties of tissues
- Vascular cooling

Impact of blood flow depends on vessel size:

Impact of blood flow depends on vessel size:

- (almost) in thermal equilibrium with tissue
- Modelled collectively with bio-heat equation

Impact of blood flow depends on vessel size:

- (almost) in thermal equilibrium with tissue
- Modelled collectively with bio-heat equation
 - Pennes bio-heat equation
 - Effective tissue conductivity

Impact of blood flow depends on vessel size:

- (almost) in thermal equilibrium with tissue
- Modelled collectively with bio-heat equation
- Large vessels:
 - Arteries cause cold tracks in tissue
 - Modelled individually

Cold track along large, unequilibrated vessels

Figure 3. Two-dimensional plot of the temperature distribution in a plane through the axis of vessel 2 along the x-axis. Note the difference in scale between the x-axis and the r-axis (length x-axis 0.5 m).

Lagendijk Phys Med Biol 27 17-23 (1982)

Cold track along large, unequilibrated vessels

Lagendijk Phys Med Biol 27 17-23 (1982)

Thermal equilibration length

Table 1. Typical vessel parameters for the circulation of a 13-kg dog. First four columns from Green (1950), based on Mall (1888). The Reynolds number, entrance and equilibration length computed with $\rho_{\rm b} = 10^3$ kgm⁻³, $\mu = 0.0035$ kgm⁻¹ s⁻¹, $c_{\rm b} = 4 \times 10^3$ Jkg⁻¹ K⁻¹, $Ca_{10} = 0.1$, Nu = 4.01, $k_{\rm b} = k_{\rm eff} = 0.6$ WK⁻¹ m⁻¹ and b/a = 10.

Vessel type	Diameter (mm)	Length (cm)	Velocity (cm s ⁻¹)	Number	Reynolds number	Entrance length (cm)	Equilibration length (cm)
Aorta	10	40	50	1	1400	830	11 700
Large arteries	3	20	13	4×10	110	20	270
Main branches	1	10	8	6×10^{2}	23	1.3	19
Secondary branches	0.6	4	8	10 ³	14	0.5	6.7
Tertiary branches	0.14	1.4	3.4	7.6×10^{4}	1	0.01	0.16
Terminal branches	0.05	0.1	2	1×10^{6}	0.3	0.001	0.012
Terminal arteries	0.03	0.15	0.4	1.3×10^{7}	0.03	0.000 06	0.000 8
Arterioles	0.02	0.2	0.3	4×10^{7}	0.02	0.000 02	0.000 3
Capillaries	0.008	0.1	0.07	1.2×10^{9}	0.002	0.000 000 7	0.000.01
Vernules	0.03	0.2	0.07	8×10^{7}	0.006	0.000 01	0.000 15
Terminal branches	0.07	0.15	0.07	1.3×10^{7}	0.014	0.000 06	0.000 8
Terminal veins	0.13	0.1	0.3	1×10^{6}	0.11	0.000 8	0.012
Tertiary veins	0.28	1.4	0.8	7.6×10^{4}	0.6	0.01	0.15
Secondary veins	1.5	4	1.3	1.8×10^{3}	6	0.5	6.8
Main veins	2.4	10	1.5	6×10^2	10	1.4	20
Large veins	6	20	3.6	4×10	60	22	300
Vena cava	12.5	40	33	1	1200	860	12 000

Thermal equilibration length

Table 1. Typical vessel parameters for the circulation of a 13-kg dog. First four columns from Green (1950), based on Mall (1888). The Reynolds number, entrance and equilibration length computed with $\rho_b = 10^3 \text{ kgm}^{-3}$, $\mu = 0.0035 \text{ kgm}^{-1} \text{ s}^{-1}$, $c_b = 4 \times 10^3 \text{ Jkg}^{-1} \text{ K}^{-1}$, $Ca_{10} = 0.1$, Nu = 4.01, $k_b = k_{eff} = 0.6 \text{ WK}^{-1} \text{ m}^{-1}$ and b/a = 10.

Vessel type	Diameter (mm)	Length (cm)	Velocity (cm s ⁻¹)	Number	Reynolds number	Entrance length (cm)	Equilibration length (cm)
Aorta	10	40	50	1	1400	830	11 700
Large arteries	3	20	13	4×10	110	20	270
Main branches	1	10	8	6×10^{2}	23	1.3	19
Secondary branches	0.6	4	8	10 ³	14	0.5	6.7
Tertiary branches	0.14	1.4	3.4	7.6×10^{4}	1	0.01	0.16
Terminal branches	0.05	0.1	2	1×10^{6}	0.3	0.001	0.012
Terminal arteries	0.03	0.15	0.4	1.3×10^{7}	0.03	0.000 06	0.000 8
Arterioles	0.02	0.2	0.3	4×10^{7}	0.02	0.000 02	0.000 3
Capillaries	0.008	0.1	0.07	1.2×10^{9}	0.002	0.000 000 7	0.000 01
Vernules	0.03	0.2	0.07	8×10^{7}	0.006	0.000 01	0.000 15
Terminal branches	0.07	0.15	0.07	1.3×10^{7}	0.014	0.000 06	0.000 8
Terminal veins	0.13	0.1	0.3	1×10 ⁶	0.11	0.000 8	0.012
Tertiary veins	0.28	1.4	0.8	7.6×10^{4}	0.6	0.01	0.15
Secondary veins	1.5	4	1.3	1.8×10^{3}	6	0.5	6.8
Main veins	2.4	10	1.5	6×10^{2}	10	1.4	20
Large veins	6	20	3.6	4×10	60	22	300
Vena cava	12.5	40	33	1	1200	860	12 000

Thermal equilibration length

Table 1. Typical vessel parameters for the circulation of a 13-kg dog. First four columns from Green (1950), based on Mall (1888). The Reynolds number, entrance and equilibration length computed with $\rho_b = 10^3 \text{ kgm}^{-3}$, $\mu = 0.0035 \text{ kgm}^{-1} \text{ s}^{-1}$, $c_b = 4 \times 10^3 \text{ Jkg}^{-1} \text{ K}^{-1}$, $Ca_{10} = 0.1$, Nu = 4.01, $k_b = k_{eff} = 0.6 \text{ WK}^{-1} \text{ m}^{-1}$ and b/a = 10.

Vessel type	Diameter (mm)	Length (cm)	Velocity (cm s ⁻¹)	Number	Reynolds number	Entrance length (cm)	Equilibration length (cm)
Aorta	10	40	50	1	1400	830	11 700
Large arteries	3	20	13	4×10	110	20	270
Main branches	1	10	8	6×10^{2}	23	1.3	19
Secondary branches	0.6	4	8	10 ³	14	0.5	6.7
Tertiary branches	0.14	1.4	3.4	7.6×10^{4}	1	0.01	0.16
Terminal branches	0.05	0.1	2	1×10^{6}	0.3	0.001	0.012
Terminal arteries	0.03	0.15	0.4	1.3×10^{7}	0.03	0.000 06	0.000 8
Arterioles	0.02	0.2	0.3	4×10^{7}	0.02	0.000 02	0.000 3
Capillaries	0.008	0.1	0.07	1.2×10^{9}	0.002	0.000 000 7	0.000 01
Vernules	0.03	0.2	0.07	8×10^7	0.006	0.000 01	0.000 15
Terminal branches	0.07	0.15	0.07	1.3×10^{7}	0.014	0.000 06	0.000 8
Terminal veins	0.13	0.1	0.3	1×10 ⁶	0.11	0.000 8	0.012
Tertiary veins	0.28	1.4	0.8	7.6×10^{4}	0.6	0.01	0.15
Secondary veins	1.5	4	1.3	1.8×10^{3}	6	0.5	6.8
Main veins	2.4	10	1.5	6×10^2	10	1.4	20
Large veins	6	20	3.6	4×10	60	22	300
Vena cava	12.5	40	33	1	1200	860	12 000

Thermal equilibration length

Table 1. Typical vessel parameters for the circulation of a 13-kg dog. First four columns from Green (1950), based on Mall (1888). The Reynolds number, entrance and equilibration length computed with $\rho_b = 10^3 \text{ kgm}^{-3}$, $\mu = 0.0035 \text{ kgm}^{-1} \text{ s}^{-1}$, $c_b = 4 \times 10^3 \text{ Jkg}^{-1} \text{ K}^{-1}$, $Ca_{10} = 0.1$, Nu = 4.01, $k_b = k_{eff} = 0.6 \text{ WK}^{-1} \text{ m}^{-1}$ and b/a = 10.

Thermal equilibration length

Table 1. Typical vessel parameters for the circulation of a 13-kg dog. First four columns from Green (1950), based on Mall (1888). The Reynolds number, entrance and equilibration length computed with $\rho_b = 10^3 \text{ kgm}^{-3}$, $\mu = 0.0035 \text{ kgm}^{-1} \text{ s}^{-1}$, $c_b = 4 \times 10^3 \text{ Jkg}^{-1} \text{ K}^{-1}$, $Ca_{10} = 0.1$, Nu = 4.01, $k_b = k_{eff} = 0.6 \text{ WK}^{-1} \text{ m}^{-1}$ and b/a = 10.

Thermal equilibration length

Table 1. Typical vessel parameters for the circulation of a 13-kg dog. First four columns from Green (1950), based on Mall (1888). The Reynolds number, entrance and equilibration length computed with $\rho_b = 10^3 \text{ kgm}^{-3}$, $\mu = 0.0035 \text{ kgm}^{-1} \text{ s}^{-1}$, $c_b = 4 \times 10^3 \text{ Jkg}^{-1} \text{ K}^{-1}$, $Ca_{10} = 0.1$, Nu = 4.01, $k_b = k_{eff} = 0.6 \text{ WK}^{-1} \text{ m}^{-1}$ and b/a = 10.

Vessel type	Diameter (mm)	Length (cm)	$\frac{Velocity}{(cm \ s^{-1})}$	Number	Reynolds number	Entrance length (cm)	Equilibration length (cm)
Aorta	10	40	50	1	1400	830	11 700
Large arteries	3	20	13	4×10	110	20	270
Main branches	1	10	8	6×10^{2}	23	1.3	19
Secondary branches	0.6	4	8	10 ³	14	0.5	6.7
Tertiary branches	0.14	1.4	3.4	7.6×10^{4}	1	0.01	0.16
Terminal branches	0.05	0.1	2	1×10^{6}	0.3	0.001	0.012
Terminal arteries	0.03	0.15	0.4	1.3×10^{7}	0.03	0.000 06	0.000 8
Arterioles	0.02	0.2	0.3	4×10^{7}	0.02	0.000 02	0.000 3
Capillaries	0.008	0.1	0.07	1.2×10^{9}	0.002	0.000 000 7	0.000 01
Vernules	0.03	0.2	0.07	8×10^7	0.006	0.000 01	0.000 15
Terminal branches	0.07	0.15	0.07	1.3×10^{7}	0.014	0.000 06	0.000 8
Terminal veins	0.13	0.1	0.3	1×10^{6}	0.11	0.000 8	0.012
Tertiary veins	0.28	1.4	0.8	7.6×10^{4}	0.6	0.01	0.15
Secondary veins	1.5	4	1.3	1.8×10^{3}	6	0.5	6.8
Main veins	2.4	10	1.5	6×10^2	10	1.4	20
Large veins	6	20	3.6	4×10	60	22	300
Vena cava	12.5	40	33	1	1200	860	12 000

Thermal equilibration length

Table 1. Typical vessel parameters for the circulation of a 13-kg dog. First four columns from Green (1950), based on Mall (1888). The Reynolds number, entrance and equilibration length computed with $\rho_{\rm b} = 10^3$ kgm⁻³, $\mu = 0.0035$ kgm⁻¹ s⁻¹, $c_{\rm b} = 4 \times 10^3$ Jkg⁻¹ K⁻¹, $Ca_{10} = 0.1$, Nu = 4.01, $k_{\rm b} = k_{\rm eff} = 0.6$ WK⁻¹ m⁻¹ and b/a = 10.

Vessei type	Diameter (mm)	Length (cm)	Velocity (cm s ⁻¹)	Number	Reynolds number	Entrance length (cm)	Equilibration length (cm)	
Aorta	10	40	50	1	1400	830	11 700	
Main beanches	3	20	13	4×10	110	20	270	
Secondary branches	0.6	4	8	10 ³	14	0.5	67	
Tertiary branches	0.14	1.4	3.4	7.6×10^{4}	1	0.01	0.16	1
Terminal branches	0.05	0.1	2	1×10°	0.3	0.001	0.012	
Terminal arteries	0.03	0.15	0.4	1.3×10^{7}	0.03	0.000 06	0.000 8	
Arterioles	0.02	0.2	0.3	4×10^{7}	0.02	0.000 02	0.000 3	noar thormal
Capillaries	0.008	0.1	0.07	1.2×10^{9}	0.002	0.000 000 7	0.000 01	
Vernules	0.03	0.2	0.07	8×10^{7}	0.006	0.000 01	0.000 15	oquilibrium
Terminal branches	0.07	0.15	0.07	1.3×10^{7}	0.014	0.000 06	0.000 8	
Terminal veins	0.13	0.1	0.3	1×10 ⁶	0.11	0.000 8	0.012	
Tertiary veins	0.28	1.4	0.8	7.6×10^{4}	0.6	0.01	0.15	
Secondary veins	1.5	4	1.3	1.8×10^{3}	6	0.5	6.8	
Main veins	2.4	10	1.5	6×10^{2}	10	1.4	20	
Large veins	6	20	3.6	4×10	60	22	300	
Vena cava	12.5	40	33	1	1200	860	12 000	
		41				6		

Thermal equilibration length

Table 1. Typical vessel parameters for the circulation of a 13-kg dog. First four columns from Green (1950), based on Mall (1888). The Reynolds number, entrance and equilibration length computed with $\rho_b = 10^3 \text{ kgm}^{-3}$, $\mu = 0.0035 \text{ kgm}^{-1} \text{ s}^{-1}$, $c_b = 4 \times 10^3 \text{ Jkg}^{-1} \text{ K}^{-1}$, $Ca_{10} = 0.1$, Nu = 4.01, $k_b = k_{eff} = 0.6 \text{ WK}^{-1} \text{ m}^{-1}$ and b/a = 10.

(mm)	(cm)	Velocity (cm s ⁻¹)	Number	Reynolds number	length (cm)	length (cm)			
10	40	50	1	1400	830	11 700		continuum	Pennes
3	20	13	4×10	110	20	270			
1	10	8	6×10^{2}	23	1.3	19		model	or k _{off}
0.6	4	8	10 ³	14	0.5	6.7			en
0.14	1.4	3.4	7.6×10^{4}	1	0.01	0.16			
0.05	0.1	2	1×10^{6}	0.3	0.001	0.012			
0.03	0.15	0.4	1.3×10^{7}	0.03	0.000 06	0.000 8			
0.02	0.2	0.3	4×10^7	0.02	0.000 02	0.000 3		noor thormol	
0.008	0.1	0.07	1.2×10^{9}	0.002	0.000 000 7	0.000 01	2	near thermal	
0.03	0.2	0.07	8×10^{7}	0.006	0.000 01	0.000 15	~	oquilibrium	
0.07	0.15	0.07	1.3×10^{7}	0.014	0.000 06	0.000 8			
0.13	0.1	0.3	1×10°	0.11	0.000 8	0.012			
0.28	1.4	0.8	7.6×10^{4}	0.6	0.01	0.15			
1.5	4	1.3	1.8×10^{3}	6	0.5	6.8			
2.4	10	1.5	6×10^{2}	10	1.4	20			
6	20	3.6	4×10	60	22	300			
12.5	40	33	1	1200	860	12 000			1100.0
	10 3 1 0.6 0.14 0.05 0.03 0.02 0.008 0.03 0.07 0.13 0.28 1.5 2.4 6 12.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Impact of blood flow depends on vessel size:

- (almost) in thermal equilibrium with tissue
- Modelled collectively with bio-heat equation

Impact of blood flow depends on vessel size:

- (almost) in thermal equilibrium with tissue
- Modelled collectively with bio-heat equation
- Large vessels:
 - Arteries cause cold tracks in tissue
 - Modelled individually

Impact of blood flow depends on vessel size:

• Small vessels:

- (almost) in thermal equilibrium with tissue
- Modelled collectively with bio-heat equation
- Large vessels:

Arteries cause cold tracks in tissue

Large vessels:

Arteries cause cold tracks in tissue

Large vessels:

Arteries cause cold tracks in tissue

Large vessels:

Arteries cause cold tracks in tissue

Impact of blood flow depends on vessel size:

• Small vessels:

- (almost) in thermal equilibrium with tissue
- Modelled collectively with bio-heat equation

Large vessels:

Example: locoregional hyperthermia of prostate

Van den Berg et al. Phys Med Biol. 2006; 51: 809-825

- Bio-heat equation
- Thermal properties of tissues
- Vascular cooling

- Bio-heat equation
- Thermal properties of tissues
- Vascular cooling

Conclusion: bio heat transfer is a complex and challenging topic, with limited accuracy for Pennes equation

- Bio-heat equation
- Thermal properties of tissues
- Vascular cooling

Tomorrow:

modeling heat transport in treatment planning

Amsterdam UMC

University Medical Centers

Hans Crezee