

Clinical application of ultrasound for hyperthermia

Imaging & Oncology Division

Roel Deckers

Ultrasound vs. Electromagnetic waves

Ultrasound

Advantages

- Small focal spot (~mm) ٠
- **Electronic beam steering**
- Real-time (feedback) control through image-guidance

Disadvantages

Presence of bone and air cause difficulties

Electromagnetic waves

dvantaaes Heat large tumor volumes (~cm) **Clinically applied**

Disadvantages

- Limited capacity for the compensation of inhomogeneous heating rates and local heat sinks
- Temperature control is achieved via a-priori treat planning
- Monitoring based on thermocouples

Patient HIFU treatments by indication

Cumulative

None of these applications is hyperthermia-related!

3

Source: https://www.fusfoundation.org/

2021

Evolution of FUS for HT: 1st generation

Unfocused single element + single thermocouple

Fig. 1. Clinical ultrasound transducer and housing. Temperature of the circulating water was adjusted to control skin temperature by thermal diffusion. 2 cm and 4 cm field sizes were used.

Marmor & Hahn 1978 IJROBP

Combined RT and HT in superficial human tumors

- 2 US transducers were used:
 - \circ 2.05 MHz \rightarrow 4 cm US field
 - \circ 3.0 MHz \rightarrow 2 cm US field
- Multiple thermocouples to monitor temperature
- 15 patients with multiple superficial metastatic tumors
- Each patient's own tumor was used as a control
- 7 of 15 patients had an improved response in the tumor that received hyperthermia with irradiation

15 min @ 43° C		30 min @ 43° C	
HT	RT	HT	

US-induced HT for the treatment of human superficial tumors

Diagnosis	Evaluable patients	Partial responses	Complete responses
Melanoma	10	3	2
Sarcoma	7	4	1
Squamous cell carcinoma			
Head and neck	3	2	1
Lung	2	0	0
Adenocarcinoma			
Lung	2	0	0
Breast	3	2	1
Renal	1	0	0
Total	28	11	5
Percent responses		39	18
C	inica	2	024

- 3 US transducers were used:
 - f = 1-3 MHz
 - Diameter = 2.5, 3.75 and 5 cm
- Multiple thermocouples to monitor temperature (in 14 pts)
 - 28 patients with recurrent or metastatic disease
- Temperatures ranging from 43° to 50° C

Corry, 1982, IJROBP

Table 3.	Responses	by	treatment	temperature

Temperature	No.		(Responses)			Response duration (days)	
range	patients	No. PR	No. CR	% (CR + PR)	Median	Range	
43-44°C	15	6	2	53	29	14-60	
45-47°C	7	3	0	42	46	21-60	
48-50°C	6	3	2	83	250	200-340+	

Transrectal ultrasound hyperthermia (TRUSH)

Intracavitary ultrasound devices for transrectal application of prostate hyperthermia

Publication	Clinical studies
Diederich, 1990, Med Phys	Design & development of multielement intracavitary US applicator
Fosmire, 1993, IJROBP	Phase I feasibility & safety study in 14 patients
Algan, 2000, Cancer	Phase I/II study; HT + RT; 26 patients
Hurwitz, 2002, IJROBP	Phase II study; HT + RT; 30 patients
Hurwitz, 2005, IJH	Phase II study, HT +RT, 37 patients
Hurwitz, 2011, Cancer	Long-term results of Hurwitz, 2005

- Safe, feasible, favorable toxicity profile
- Therapeutic temperatures achieved
- Disease free survival at 2 y was significantly improved (84% vs 64%)

State-of-the-art FUS prostate systems

There are four focused ultrasound manufacturers that are approved in the US for the ablation (destruction) of prostate tissue: Focal one, EDAP-TMS

Sonasource

<image>

No hyperthermia studies performed with these systems!

Technically feasible: Salgaonkar, 2014, Med Phys

Evolution of FUS for HT: 2nd generation

Separately controllable stationary transducer arrays + multiple thermometers

Ogilvie et al. 1990 IJH

Diederich et al. 1999 UMB

Clinical studies using Sonotherm 1000 system

Publication	Target site	Therapy	# patients	Outcome
Bornstein, IJROBP, 1993	Locally or regionally recurrent or advanced adenocarcinoma of the breast	Chemo + HT + RT	29 in total (13 US; 16 MW)	Overall complete response rate was 53%.
Myerson, IJH 1999	H&N (21), chest wall or breast (15), trunk (7), extremety (4)	RT + HT on	44 patients with 47 lesions (28 US; 19 MW)	Complete and partial response rate were 51% and 17%
Xia, Int J Clin Oncol, 2001	H&N (15), breast (9), lung (8), esophagus (6), colorectal (6), STS (5), extremety (3), other (2)	RT + HT PEN	54 patients	Complete and overall response rates were 32.6% and 78.8%,
Varma, IJH, 2012	Locally advanced breast cancer	RT + HT	57 patients	four (7%) with locoregional recurrence and 16 with distant failure

- Feasible and well tolerated
- No change in late toxicity
- Good response rates
- \rightarrow Very mixed population
- \rightarrow Phase I/II studies \rightarrow no control group

Evolution of FUS for HT: 3rd generation

3rd generation: mechanical scanning of the ultrasound beams

ANA

Clinical studies using SFUS

	Target site	Therapy	# patients
Harari, IJROBP, 1991	Pelvis (22), chest wall or breast (14), H&N (8), groin (8), axilla (7), extremity (5), abd wall (3), thorax (3), deep abd (1)	RT + HT	87 tumors in 71 patients
Guthkelch, J Neuro- Oncol, 1991	Brain tumors	MT + RT	15 patients
	A	I de la	

Evolution of FUS for HT: 4th generation

Focused ultrasound transducers that integrate mechanical scanning and electronic beam steering combined with MR imaging (**MR-guided HIFU**)

Profound Sonalleve 3D anatomy & temperature ESHO Schourthe mapping **Insightec Exablate body MR-HIFU** position, timing, & power control HIFU-induced heating UMC Utrecht 13 HIFU transducer

ANNAR

PC

MR-guided HIFU induced hyperthermia

Technically challenging:

- Large volume \rightarrow mechanical steering & near field heating
- Long duration → field drift & near field heating
- Narrow temperature range \rightarrow control algorithm
- Large spatial variations in tissue energy absorption rate \rightarrow control algorithm
- Large variations in cooling rate caused by blood flow \rightarrow control algorithm

Mechanical steering

Electronic beam steering

Focal spot size: 2×2×7 mm³

Phased-array transducer:

- 256 elements
- Electronic displacement along all directions (about ±2cm)
- Very fast electronic displacement position update < 10ms
- Allow to heat a large area without transducer displacement

$$\varphi_2 - \varphi_1 = 2\pi \frac{L_2 - L_1}{\lambda}$$

Mechanical + electronic steering

Tillander et al. 2016 Med Phys

- Cell sizes: 18, 32, 44, and 58 mm,
- Predefined set of electronic focus steering points and transducer positions
- Binary feedback algorithm for controlling heating

Clinical studies performed with G4 system

Liposarcoma

Edwin Heijman - Volumetric hyperthermia of soft tissue sarcoma using MR-HIFU (2018) 0 4 Results T1-weighted Temperature ['C] planning imaging FOCUSED Maintaining ULTRASOUND FOUNDATION 3:54 / 6:18 Scroll voor details •• • • ÷ 2:37 / 4:45

Heijman et al., FUSF symposium, 2018

Pichardo et al., FUSF symposium, 2020

Head and Neck tumor

MRgHIFU hyperthermia + TSL

TARDOX-study Temperature Sensor in А Coaxial Needle (Part I Target volun Target to Time (mii Ribso O B-mode probe FUS sourc Treatment Line Treatmen Freatmen Treatmen Section Sections Volume → V Lyon et al. 2018 Lancet; Gray et al. 2019 Radiol

- No MRI-guidance
- Avg. increase of 3.7 times in intratumoural biopsy doxorubicin concentrations
- Clinically feasible, safe, and able to enhance intratumoural drug delivery

MR-HIFU + DPPG₂-TSL in pigs

19

Treatment site feasible for HIFU?

	MR thermometry quality	Accessibility using MR-HIFU	HIFU ablation
Bladder	Kothapalli2018		?
Bone	Staruch2012; Guillemin2019	Bing2018	Yes, FDA approved
Breast	UMCU	UMCU	Yes
Cervix/ovary		Zhu2021; Giles2019	
Chest (wall)	Kothapalli2018; Bing2019		
Glioblastoma			
Head & neck			?
Limb	Kothapalli2018; Bing2019		
Liver			Yes
Lung			Case report in 2018
Melanoma			?
Neuroblastoma		Shim2016	
Pelvis	Bing2019		
Rectum	Chu2016	Chu2016	
Soft tissue sarcoma		Shim2016	Yes

Bone

Positioning of the focal point is critical

Guillemin 2019, J Transl Med

■ Vertebra ■ Pelvis □ Peripheral bone ■ Rib ■ Sternum Bing, 2018, Radiology

Cervix

- 57/79 patients (72.15%) were targetable from at least one angle
- 39/79 (49.37%) were targetable posteriorly and 31/79 (39.24%) were targetable anteriorly

22

Rectal cancer

Shim, 2016, Pediatr Blood Cancer

Homework assignment

- Why is (MR-guided) focused ultrasound currently not used for hyperthermia treatments in the clinic? •
- Estlo Schoerther Linical 2022 What is the best application for MR-guided FUS induced HT to start with? ٠

Answers can be mailed to: r.deckers-2@umcutrecht.nl

