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Simple Summary: When exposed to heat, and other forms of stress, mammalian cells activate a rich
and diverse network of processes, pathways and genes which, together, protect them from damage.
Even though this process, termed the heat stress response, has been studied extensively for many
decades, and is particularly relevant in the context of cancer (treatment), its systemic understanding
is still beyond our reach. Here, we explored one aspect of the heat stress response in cancer cells—
changes in gene expression—by subjecting 18 datasets to extensive meta-analysis. We found a
surprisingly high level of inter-study variability, driven at least in part by the different experimental
conditions applied in each study, and an apparent absence of a ‘universal’ gene expression signature.
Our results suggest that gene expression changes after heat stress may be largely determined by the
experimental context and call for a more extensive, controlled study that examines the effects of key
experimental parameters.

Abstract: Hyperthermia is clinically applied cancer treatment in conjunction with radio- and/or
chemotherapy, in which the tumor volume is exposed to supraphysiological temperatures. Since
cells can effectively counteract the effects of hyperthermia by protective measures that are commonly
known as the heat stress response, the identification of cellular processes that are essential for surviv-
ing hyperthermia could lead to novel treatment strategies that improve its therapeutic effects. Here,
we apply a meta-analytic approach to 18 datasets that capture hyperthermia-induced transcriptome
alterations in nine different human cancer cell lines. We find, in line with previous reports, that
hyperthermia affects multiple processes, including protein folding, cell cycle, mitosis, and cell death,
and additionally uncover expression changes of genes involved in KRAS signaling, inflammatory
responses, TNF-a signaling and epithelial-to-mesenchymal transition (EMT). Interestingly, however,
we also find a considerable inter-study variability, and an apparent absence of a ‘universal’ heat
stress response signature, which is likely caused by the differences in experimental conditions. Our
results suggest that gene expression alterations after heat stress are driven, to a large extent, by the
experimental context, and call for a more extensive, controlled study that examines the effects of key
experimental parameters on global gene expression patterns.

Keywords: hyperthermia; heat shock response; transcriptome; neoplasms; gene expression;
meta-analysis

Cancers 2023, 15, 113. https://doi.org/10.3390/cancers15010113 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15010113
https://doi.org/10.3390/cancers15010113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-2504-2058
https://orcid.org/0000-0002-2622-2918
https://doi.org/10.3390/cancers15010113
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15010113?type=check_update&version=2


Cancers 2023, 15, 113 2 of 17

1. Introduction

Hyperthermia (i.e., the exposure of tumor tissue to elevated temperatures of 39–44 ◦C)
is gaining interest as an adjunct to radio- and chemotherapy in a wide spectrum of cancers,
including cervix, colon, skin and bladder [1], with efficacy supported by an increasing
body of clinical trials [2–6]. The therapy-promoting effects of hyperthermia are attributed
to various mechanisms, both at the macroscopic and cellular level [7–9]. For instance,
the elevation of tissue perfusion and oxygenation, in both well- and poorly vascularized
regions, are thought to be the main drivers of radio- and chemosensitization by hyperther-
mia [10–17], as they affect some aspects of the tumor microenvironment that are relevant in
disease progression and metastasis, such as hypoxia, acidity and nutrient shortage [18,19].
Moreover, the perfusion-driven increase in oxygen maximizes the cytotoxicity of radio-
therapy and different types of chemotherapeutics that show a dependence on oxygen for
their efficacy [20]. Accumulating preclinical evidence also suggests that hyperthermia has
immunostimulatory effects [21], which might be exploited in novel treatment strategies
that include, among others, immune checkpoint inhibition [22]. At the cellular level, heat
alters membrane characteristics and induces proteotoxic stress, negatively affecting most
compartments and multiple pathways [8].

In response to hyperthermia, as well as to many other forms of stress, cells activate
a protective mechanism known as the heat stress response. This process was initially
characterized as an activation of a subfamily of chaperone proteins, nowadays known
as heat shock proteins [23], and many subsequent studies have confirmed and further
explored their role in stress tolerance [24–26]. In recent decades, however, Omics-based
applications, such as microarrays and proteomics, have been applied to systematically
uncover heat stress-induced changes in gene expression in different organisms [27–30],
which led to the consensus that heat stress activates functionally different classes of genes
that are involved in proteostasis, metabolism, DNA-repair and detoxification [8]. More
recent techniques, such as Precision Run-On sequencing (PRO-seq), which identifies the
exact positions of transcribing polymerase II complexes across the genome, have provided
detailed additional insights into the transcriptional alterations after heat stress [31–34].
Furthermore, the role of histone modifications [32,35,36] and key transcriptional regulators
in the heat stress response, such as HSF1 [30,33,37], have been assessed by chromatin
immunoprecipitation sequencing (ChiP-seq) in different organisms.

Among these various aspects of the heat stress response, gene expression is among
the best studied, yielding a considerable body of data that has been mostly generated
using different transcriptomics techniques. Some early contributions reported on gene
expression changes in organisms such as A. fulgidus, E. coli, S. cerevisiae, C. elegans and A.
thaliana [38–42], as well as in a human (lymphoma) cancer cell line [43]. Subsequent studies
explored the transcriptome alterations in different cancer cell lines [43–48], and found
multiple effects in processes related to protein folding, cell cycle, mitosis, and cell death
(Table 1). Nevertheless, as the different experiments and studies focus on, and highlight,
different processes, pathways or genes in relative isolation, systemic interpretation and
systematic understanding of the emerging gene regulation landscape remain challenging.
Meta-analysis has, historically, been among highly useful tools in such cases and, indeed,
it has been applied over a decade ago by Richter and colleagues to review and compare
gene regulation in response to heat stress [8]. The authors of this study relied on a few
then-available datasets to reveal the diverse and largely non-overlapping patterns of gene
expression after heat stress in different organisms.
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Table 1. Comparison of important pathways and regulated genes between studies.

Study GEO Accession Aim Highlighted Pathways
and Functions Highlighted Genes

Tabuchi et al.,
2008 [43] GSE10043

Examine gene expression
patterns in human
myelomonocytic
lymphoma U937 cells
exposed to mild
hyperthermia

Up- or downregulated:

• Cellular function
and maintenance

• Cell cycle
• Cell death

Unfolded protein response-related
genes were upregulated: Hsp40
homologs (DNAJA1, DNAJB1),
Hsp70 proteins (HSPA6, HSPA1A,
HSPA1B, HSPA1L), HSPB1 (heat
shock 27 kDa protein 1), HSPH1
(heat shock 105 kDa/110 kDa
protein 1), PPP1R15A (protein
phosphatase 1, regulatory
(inhibitor) subunit 15 A), and
SERPINH1 (serpin peptidase
inhibitor, clade H (heat shock
protein 47), member 1).

Furusawa et al.,
2011 [48] GSE23405

Understand the molecular
mechanisms underlying
cellular responses to heat
stress at temperatures
higher and lower than the
inflection point of
hyperthermia

Upregulated:

• Cellular
compromise

• Cellular function
and maintenance

• Cell death

Downregulated:

• Gene expression
• Cellular growth

and proliferation
• Cellular

development

Peak expression of HSPs was
observed 3 h after heat stress. The
expression level of HSPs such as
the Hsp70 (HSPA6, HSPA1A),
Hsp40 (DNAJA1, DNAJB1) and
Hsp27 (HSPB1) gene subfamilies
was gradually elevated at 44 ◦C.

Amaya et al.,
2014 [45] GSE48398

Identify the unique gene
networks distinct between
normal and cancer cell
lines following
hyperthermia

Upregulated:

• Mitosis
• Cell division
• Cell cycle

Mitotic regulatory genes were
up-regulated: STAG2, NEK2,
KPNA4, IPO5, TNPO1, CCNB1,
CDK1, CDK6, NCAPG, NCAPG2,
TOP2A, NUF2, CENPE, CENPF,
ZWILCH, PDS5A, WEE1, KIF11,
CHUK, and PPP1CB.

Court et al.,
2017 [44] GSE92990

Investigate gene expression
profiles after magnetic
fluid hyperthermia in
ovarian cancer cell lines to
elucidate cellular response
and select molecular
targets to enhance its effect
in vitro and in vivo

Upregulated:

• Response to
unfolded proteins

• Response to
protein stimulus

• Protein folding

Top genes related to the
aforementioned functions affected
by magnetic fluid hyperthermia
were HSPs, Hsp70
(HSPA6/HSPA7, HSPA1A,
HSPA1B, HSPA1L, HSPA4L),
Hsp60 (LOC643300), Hsp40
(DNBAJ family), Hsp20 (CRYAB)
and Hsp27 (SERPINH1), and
BAG3 (modulator of Hsp70).

Andocs et al.
2015 [49] GSE58750

Identify the gene
expression alterations
induced by heat treatment
in human tumor HT29
colorectal cancer xenograft
mouse model

Upregulated:

• Heat shock
proteins

Members of the heat shock protein
70 family including HSPA1A,
HSPA1B, HSPA4, HSPA6, and
HSPA8, and their co-chaperones
Hsp40 (DNAJB1 and DNAJB4)
and Bag3 became upregulated.
Hsp90 alpha (HSP90AA1) and
Hsp60 (HSPD1) gene transcripts
were also elevated upon
hyperthermia treatment.
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Table 1. Cont.

Study GEO Accession Aim Highlighted Pathways
and Functions Highlighted Genes

Yunoki et al.,
2016 [47] GSE75127

Identify gene networks
involved in the
enhancement of
hyperthermia sensitivity by
the knockdown of BAG3 in
human oral squamous cell
carcinoma cells

Upregulated:

• Cell growth and
proliferation

• Post-translational
modification

• Protein folding

Downregulated:

• Cell cycle
• Gene expression
• Protein synthesis.

Genes associated with HSPs, such
as DNAJB1, HSPA1A, HSPA5,
HSPB1, HSPD1, and HSPH1, as
well as BAG3 and clusterin (CLU),
were up-regulated.

Here, we apply a comparable meta-analytic approach, focusing on 16 public and two un-
published datasets that quantified hyperthermia-induced transcriptome alterations in various
human cancer cell lines. Our results demonstrate a high degree of inter-study variability in
the transcriptome landscape, and an apparent absence of a universal heat stress response sig-
nature. This is likely caused, at least in part, by the different experimental conditions adopted
(including cell line, heating technique, thermal dose, time after heat stress, experimental and
data analysis pipeline), but due to the limited number of datasets, it is not feasible to confirm
which parameters are major drivers of variability. Our analysis highlights, therefore, that the
results of individual gene expression studies should generally be interpreted in the context of
their particular experimental setup, and that extrapolation of these results to other conditions
should be exercised with caution. It also calls for a more extensive, controlled study that
would examine the effects of some key parameters, notably the cell line, the thermal dose, the
heating technique, and the time after heat stress, in direct comparison.

2. Materials & Methods
2.1. Data Collection and Curation

Embase and PubMed-Medline were systematically searched based on the following
MeSH terms and keywords: Hyperthermia, Heat Shock Protein, Heat Shock Response,
Genomics, Neoplasms, Transcriptome, Whole Exome Sequencing, Gene Expression Pro-
filing, Microarray Analysis, RNA-Seq, Oligonucleotide Array Sequence Analysis, and
Protein Array Analysis. Our search led to a collection of 683 references. 505 references were
excluded after reviewing the title and abstract. 172 additional manuscripts were excluded
by not meeting the following criteria: (i) reference is a research paper, (ii) full manuscript
has been published, (iii) treatment protocols are clearly specified, (iv) appropriate controls
are present, (v) raw data is available through a database or upon request, (vi) overall
quality. Overall quality assessment considered the following criteria: (i) Publication is
peer-reviewed, (ii) Statement of conflict of interest is present, (iii) Study reports on cell lines,
experimental conditions and criteria for data quality assessment (iv) Comparison between
experimental conditions and control is present. Data extraction, from Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/ (accessed on 20 March 2022)), and
curation was performed in R, official gene symbols were used to identify the genes. When
a microarray dataset contained multiple quantifications of gene expression due to the
presence of multiple probes in the microarray format, we selected the probe that reported
the highest alteration in gene expression. The datasets were subsequently merged with our
unpublished datasets.

2.2. Acquisition and Processing of Unpublished Gene Expression Data

HeLa and T24 cells were cultured in at 37 ◦C at 5% CO2 in EMEM (Gibco, Hong
Kong, China) and DMEM (Gibco), respectively, supplemented with 10% fetal bovine

https://www.ncbi.nlm.nih.gov/geo/
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serum (Gibco), 100 U/mL penicillin (Gibco), 100 U/mL streptomycin (Gibco), and 2 mM L-
glutamine (Gibco). 24 h before hyperthermia treatment, cells were seeded in 10 cm culture
dishes (Greiner). Hyperthermia (i.e., 42 ◦C for 1 h) was performed by submerging cell
cultures in a calibrated water bath. The incubation was extended by 5 min to compensate
for the time required to reach the target temperature. Cells were collected by scraping in
ice-cold PBS. RNA isolation and library preparation was performed using the RNeasy kit
(Qiagen) followed by a KAPA mRNA Hyperprep (Roche). RNA sequencing was performed
on a NovaSeq 6000 in a 150 bp paired ended fashion to a depth of 40 M reads. The reads
of HeLa cells were aligned using STAR (v2.7.9a), whereupon post-alignment processing
was performed using SAMtools (v1.13). Finally, the mapped reads were assigned to
genes using Subread (v2.0.1). Quality control was performed using FastQC (v.0.11.9) and
MultiQC (v1.11). For reads derived from T24 cells, unique molecular identifiers (UMIs) were
demultiplexed with UMItools (v1.1.2) after post-alignment processing. Further processing
was identical to that of HeLa cells. Changes in gene expression between the control and
hyperthermia-treated cells were obtained using DESeq2 [50].

2.3. Meta-Analysis

All data processing and analysis was performed in R (version 4.1.1). Principal com-
ponent analysis was conducted using the “prcomp()” function of the built-in “stats” pack-
age (https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp
(accessed on 15 September 2022)). Gene set enrichment and overrepresentation analy-
ses were performed by querying molecular signatures from the Molecular Signatures
Database [51,52] using the “msigdbr” package (https://CRAN.R-project.org/package=
msigdbr (accessed on 15 September 2022)), followed by testing for enrichment by using the
“GSEA()” or “enricher()” function of the “clusterProfiler” package at default settings [53].
Set theory was performed using the “VennDiagram” package (https://CRAN.R-project.
org/package=VennDiagram (accessed on 15 September 2022)). Hierarchical clustering
was performed using the “pheatmap” package (https://CRAN.R-project.org/package=
pheatmap (accessed on 15 September 2022)).

2.4. Experimental Validation of Gene Expression Changes

HT-29 cells were cultured in DMEM/F-12 (Gibco). HeLa and MCF-7 cells were cul-
tured in MEM (Gibco). The media contained aforementioned supplementation. 24 h before
hyperthermia treatment, cells were seeded in flat bottom 6-well plates (Greiner, Hong Kong,
China), at a density of 300,000 cells/well. Cells were harvested by scraping in ice-cold
PBS, and RNA was subsequently extracted using the PureLink™ RNA Mini Kit (Thermo
Fisher, Waltham, MA, USA). cDNA was synthesized from 1000 ng of RNA with the Thermo
Verso cDNA Synthesis Kit (Thermo Fisher). Quantitative PCR was performed using a
mixture of 10 µL of SYBR Green I (Molecular Probes Inc. Europe. BV), 1 µL specific primers
(10 mM), and 100 ng cDNA on a CFX96™ Real-Time PCR Detection System. The spe-
cific forward and reverse primers for CRYAB were TCCAGTCCTTTAAACTGAGAGCTA
and CATTCCCATCACCCGTGAAGAG, respectively. GAPDH (forward primer: TGC-
CCAGTTGAACCAGGCG and reverse primer: CGCGGAGGGAGAGAACAGTGA) was
used as a control to quantify the fold change in CRYAB expression. All qPCR experiments
were performed at least in triplicate.

3. Results
3.1. Quantification of Gene Expression after Heat Stress in Bladder and Cervix Cancer Cell Lines

To evaluate gene expression changes under clinically relevant hyperthermia conditions,
we subjected HeLa (cervical cancer) and T24 (bladder cancer) cell lines to hyperthermia for
1 h at 42 ◦C using a water bath and harvested them 6 (T24) or 24 (HeLa) hours after the
end of the treatment. Cells were then processed for gene expression analysis by total RNA
sequencing using standard protocols.

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp
https://CRAN.R-project.org/package=msigdbr
https://CRAN.R-project.org/package=msigdbr
https://CRAN.R-project.org/package=VennDiagram
https://CRAN.R-project.org/package=VennDiagram
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
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3.2. Gene Expression Patterns Are Independent from Key Experimental Parameters

16 transcriptomic datasets originating from six peer-reviewed publications, and two
new datasets from our group, were included in the meta-analysis (Figure 1A). Experiments
performed to obtain these datasets widely varied in key parameters: heating temperature
and duration, the used cell line, the heating technique, and the time between the end
of hyperthermia treatment and the transcriptomic analysis (Table 2). Different heating
methods can result in considerably divergent biological responses [54,55]. Modulated
electro-hyperthermia, for instance, induces more apoptosis than capacitive or conductive
hyperthermia under isothermal conditions, due to specific deposition of energy at the
cell membrane that may activate death-related signaling pathways [55]. There are no
clear relationships, however, between a heating method and gene expression, and to
compare the outcomes of the different treatment protocols, we normalized the thermal dose
only—by calculating the cumulative equivalent duration of heating at 43 ◦C, expressed in
minutes (CEM43) [56]. Although other approaches, such as deviation from CEM43, and
normalization of fractionated heating (e.g., TRISE), have been leveraged to evaluate and
estimate the thermal dose and the treatment efficacy in a clinical settings [6,57–59], we are
currently limited to CEM43 for in vitro studies.

A global visualization showed that the expression of various genes was altered by
at least by 1.5-fold (Figure 1B), and that this was accompanied by a shift of median gene
expression in some of the datasets (Figure 1C). To assess similarities between the datasets,
a principal component analysis was then performed, based on the expression of 9473 genes
shared between the datasets. The first three principal components, which represent 54% of
the total variance (Figure 1D), revealed clustering of most datasets, with the exception of
those originating from Furusawa et al. (2011). Based on this subset of data, the time point
after hyperthermia exposure or CEM43 did not appear to play a major role in the clustering
outcomes (Figure 1E). Similar findings were obtained by hierarchical clustering of the datasets
based on genes that were found to be differentially expressed in at least one dataset (Figure 1F).
We therefore conclude that the changes in gene expression patterns are not primarily driven by
key experimental parameters (Table 2). For this reason, we performed some of the subsequent
analyses with both the full dataset, and a dataset split into two clusters based on the results of
the principal component analysis. Cluster 1 contains the studies of Amaya (2014), Andocs
(2015), Court (2017), Scutigliani (2022), Tabuchi (2008) and Yunoki (2016), whereas cluster 2
contains the study of Furusawa (2011). Although we are equally interested in all datasets,
we will base our conclusions primarily on the results of the datasets from cluster 1, because
cluster 2 contains data from a single study.

Table 2. Comparison of studies and datasets included in the analysis.

Experimental Parameters Transcriptome Alterations

Dataset
Cell Line

and
Origin

Technique/
Platform

Heating
Technique

Temp.
(◦C)

Heating
Time
(min)

CEM43 Timepoint
(Hours)

Total
Transcripts

Upregulated
(%)

Downregulated
(%)

Tabuchi,
2008

Lymphoma
(U937)

cDNA
Microarray.

Human
Genome

U133A array

Conductive
heating:

Water bath
41 30 1,875 3 12,815 2970

(23.18%)
1708

(13.3%)

Furusawa,
2011 (a)

Lymphoma
(U937)

cDNA
Microarray.

Human
Genome

U133-plus 2.0

Conductive
heating:

Water bath
42 90 22.5 0 20,594 5466

(26.54%)
5992

(29.10%)

Furusawa,
2011 (b)

Lymphoma
(U937)

cDNA
Microarray.

Human
Genome

U133A array

Conductive
heating:

Water bath
42 15 3.75 1 20,594 4613

(22.40%)
7199

(39.69%)

Furusawa,
2011 (c)

Lymphoma
(U937)

cDNA
Microarray.

Human
Genome

U133-plus 2.0

Conductive
heating:

Water bath
42 15 3.75 3 20,594 3084

(14.98%)
13,003

(63.14%)
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Table 2. Cont.

Experimental Parameters Transcriptome Alterations

Dataset
Cell Line

and
Origin

Technique/
Platform

Heating
Technique

Temp.
(◦C)

Heating
Time
(min)

CEM43 Timepoint
(Hours)

Total
Transcripts

Upregulated
(%)

Downregulated
(%)

Furusawa,
2011 (d)

Lymphoma
(U937)

cDNA
Microarray.

Human
Genome

U133A array

Conductive
heating:

Water bath
42 15 3.75 6 20,594 3772

(18.32%)
11,589

(56.27%)

Furusawa,
2011 (e)

Lymphoma
(U937)

cDNA
Microarray.

Human
Genome

U133-plus 2.0

Conductive
heating:

Water bath
44 15 30 0 20,594 6008

(29.17%)
4770

(23.16%)

Furusawa,
2011 (f)

Lymphoma
(U937)

cDNA
Microarray.

Human
Genome

U133A array

Conductive
heating:

Water bath
44 15 30 1 20,594 8779

(42.63%)
3190

(15.49%)

Furusawa,
2011 (g)

Lymphoma
(U937)

cDNA
Microarray.

Human
Genome

U133-plus 2.0

Conductive
heating:

Water bath
44 15 30 3 20,594 7611

(36.96%)
5155

(25.03%)

Furusawa,
2011 (h)

Lymphoma
(U937)

cDNA
Microarray.

Human
Genome

U133A array

Conductive
heating:

Water bath
44 15 30 6 20,594 7017

(34.07%)
5155

(25.03%)

Amaya,
2014 (a)

Breast
cancer

(MCF7)

cDNA
Microarray.

Illumina
HumanHT-12

V4.0

Conductive
heating:

Water bath
45 30 120 4 20,909 1137

(5.44%)
1190

(5.69%)

Amaya,
2014 (b)

Breast
cancer
(MDA-

MB-231)

cDNA
Microarray.

Illumina
HumanHT-12
V4.0 beadchip

Conductive
heating:

Water bath
45 30 120 4 20,909 1336

(6.39%)
16,385

(78.36%)

Amaya,
2014 (c)

Breast
cancer
(MDA-

MB-468)

cDNA
Microarray.

Illumina
Human HT-12
V4.0 beadchip

Conductive
heating:

Water bath
45 30 120 4 20,909 132

(0.63%)
1929

(9.23%)

Court,
2017

Ovarian
cancer

(HeyA8)

cDNA
Microarray.

Human HT-12
v4 Beadchip

Electromagnetic:
Magnetic

fluid hyper-
thermia

43 30 30 0 18,299 0
(0%)

1
(0.01%)

Andocs,
2015 (a)

Colorectal
cancer

(HT-29)

cDNA
Microarray.

HGU133 Plus
2.0 arrays

Electromagnetic:
Modulated
electrohy-

perthermia

42 30 7.5 4 12,372 8
(0.06%)

1
(<0.01%)

Andocs,
2015 (b)

Colorectal
cancer

(HT-29)

cDNA
Microarray.

HGU133 Plus
2.0 arrays

Electromagnetic:
Modulated
electrohy-

perthermia

42 30 7.5 24 12,232 0
(0%)

1
(<0.01%)

Yunoki,
2016

Oral squa-
mous cell

carci-
noma

(HSC-3)

cDNA
Microarray.

Human
Genome

U133-plus 2.0
array

Conductive
heating:

Water bath
44 90 180 24 12,815 89

(0.69%)
23

(0.18%)

Scutigliani,
2022 (a) *

Bladder
cancer
(T24)

RNA
sequencing.

Illumina
Novaseq 6000,

paired-end,
read depth of

40M.

Conductive
heating:

Water bath
42 60 15 6 24,418 2370

(9.71%)
2112

(8.65%)

Scutigliani,
2022 (b) *

Cervical
cancer
(HeLa)

RNA
sequencing.

Illumina
Novaseq 6000,

paired-end,
read depth of

40 M.

Conductive
heating:

Water bath
42 60 15 24 17,673 71

(0.40%)
126

(0.71%)

* Unpublished data sets.



Cancers 2023, 15, 113 8 of 17

Cancers 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

dataset split into two clusters based on the results of the principal component analysis. 
Cluster 1 contains the studies of Amaya (2014), Andocs (2015), Court (2017), Scutigliani 
(2022), Tabuchi (2008) and Yunoki (2016), whereas cluster 2 contains the study of 
Furusawa (2011). Although we are equally interested in all datasets, we will base our 
conclusions primarily on the results of the datasets from cluster 1, because cluster 2 
contains data from a single study. 

 
Figure 1. Hierarchical clustering and principal component analysis reveal similarities in gene 
expression patterns that are independent of experimental characteristics. (A) Flow chart displaying 
the systematic search and selection process for the meta-analysis. (B) Number of differentially 
expressed genes (1.5−1 ≥ fold change ≥ 1.5) per study. (C) Fold change in gene expression per study. 
Genes that were shared among all studies were used in the principal component analysis. (D) 
Cumulative histogram of eigenvalues of principal components. The dotted horizontal line marks 
50% of the cumulative variance. Principal components visualized in (E) are indicated in red. (E) 
Visualization of the principal component analysis. The time point after hyperthermia treatment in 
hours (h) and the thermal dose, calculated as cumulative equivalent minutes at 43 degrees Celsius 
(CEM43), are indicated. (F) Genes that are differentially expressed in at least one study. Fold change 
(FC) is centered and scaled per row. 

  

Figure 1. Hierarchical clustering and principal component analysis reveal similarities in gene expres-
sion patterns that are independent of experimental characteristics. (A) Flow chart displaying the
systematic search and selection process for the meta-analysis. (B) Number of differentially expressed
genes (1.5−1 ≥ fold change ≥ 1.5) per study. (C) Fold change in gene expression per study. Genes
that were shared among all studies were used in the principal component analysis. (D) Cumulative
histogram of eigenvalues of principal components. The dotted horizontal line marks 50% of the
cumulative variance. Principal components visualized in (E) are indicated in red. (E) Visualization
of the principal component analysis. The time point after hyperthermia treatment in hours (h) and
the thermal dose, calculated as cumulative equivalent minutes at 43 degrees Celsius (CEM43), are
indicated. (F) Genes that are differentially expressed in at least one study. Fold change (FC) is centered
and scaled per row.

3.3. Common Patterns in Transcriptome Changes at a Pathway Level

To uncover which cellular processes are affected by hyperthermia, we performed both a
gene set enrichment analysis (GSEA) and an overrepresentation analysis per dataset for var-
ious gene set collections that are available through the molecular signatures database [51,52].
Using GSEA, an enrichment of multiple hallmark gene sets was found across datasets,
and various hallmarks were shared to varying extents between the datasets of cluster 1,
including the unfolded protein response, MYC targets, E2F targets, mTORC1 signaling and
G2-M transition (Figure 2A,B). In contrast, little overlap in enriched hallmarks was found
for cluster 2, with the most shared hallmark (i.e., TNF-a signaling) being enriched in only
three datasets.
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Figure 2. Transcriptome changes in subsets of datasets are highly variable. (A) Significantly enriched
hallmark gene sets (indicated in blue) per dataset in cluster 1 and 2, as determined by a gene set enrich-
ment analysis. (B) Significance of all hallmark gene sets that are displayed in (A). Point color indicates
the cluster in which a significant enrichment was found. Identical visualizations of an overrepresentation
analysis for hallmark gene sets are shown in (C) and (D). (E) Significantly enriched gene ontology (GO)
biological process terms, per study, in cluster 1 and 2, as determined by an overrepresentation analysis.
(F) Hand-curated categorization of GO terms that were found to be enriched per dataset.
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In contrast to GSEA, the outcome of an overrepresentation analysis depends solely
on differentially expressed genes. Given the low amount of differentially expressed genes
for some datasets (Table 2, Figure 1B), we also conducted an overrepresentation analysis
to evaluate whether the observed significance in hallmark gene set enrichment is actually
driven by the differentially expressed genes. The overrepresentation analysis of hallmark
gene sets clearly revealed fewer commonly altered pathways between the datasets of
cluster 1, and a high degree of variation (Figure 2C–D). Interestingly, gene sets associated
with altered KRAS signaling, inflammatory responses, TNF-a signaling and epithelial-to-
mesenchymal transition (EMT) appeared as a shared trait in cluster 2, and as a partially
shared feature between the two clusters.

By performing an overrepresentation analysis of Gene Ontology (GO) biological
processes, we were able to validate heat shock-driven alterations in protein folding, cell
cycle division and mitosis, and cell death, as claimed by the studies that are included in
this meta-analysis (Figure 2E–F, Table 1). Again, this overrepresentation analysis yielded
highly variable outcomes in cluster 1, and a small degree of overlap between cluster 1 and
2 (Figure 2E). From these analyses, we conclude that the transcriptome alterations between
these datasets share some commonalities, but are highly diverse. Importantly, a universal
heat stress response signature appears to be absent.

3.4. Shared Transcriptome Changes Are Driven by Highly Variable Gene Expression Patterns

To uncover which genes drive the results of the enrichment and overrepresentation
analysis, we applied several analytical methods. We firstly assessed the overlap in dif-
ferentially expressed genes between datasets for each cluster (i.e., a minimum of 1.5-fold
change in expression). Interestingly, although 9,474 genes are shared between all datasets,
there were no genes changed in all nine studies assigned to cluster 1. Only one differ-
entially expressed gene (i.e., CRYAB) was shared among eight out of nine datasets. Of
the 20,592 genes shared between the datasets in cluster 2, 2834 genes were differentially
expressed. To evaluate the contribution of these shared differentially expressed genes to the
overall result of the overrepresentation analysis, we selected genes that were differentially
expressed in at least three datasets in cluster 1, and at least seven in cluster 2. Under these
criteria, we found that 72 differentially expressed genes are shared between the clusters
(Figure 3B). An overrepresentation analysis, that used this core gene set as input, revealed
an enrichment of several hallmark gene sets. Interestingly, some of these hallmarks were
also found to be a shared trait between the clusters based on the overrepresentation analysis,
such as those related to KRAS signaling, TNF-a signaling and EMT (Figure 3C). Zoom-
ing in on the individual genes that drive this enrichment, however, revealed their highly
variable expression across datasets (Figure 3D). No GO terms were found to be enriched
in the 72 genes shared between the clusters. Driven by the consensus that the expression
of heat-responsive genes, especially chaperone proteins, is a hallmark of the heat stress
response, and the fact that the overrepresentation analysis showed a tendency towards
an enrichment for terms related to cellular responses to heat (Figure 3C), we examined
the expression of individual genes that are assigned to this GO term (Figure 3E). Again,
a high variability in gene expression could be observed. We thus conclude that common
alterations in the gene sets we described in earlier sections are driven by similar genes, but
the expression of these genes is, nevertheless, highly variable.
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Figure 3. Different genes drive transcriptome changes. (A) The frequency at which genes are
differentially expressed in the datasets assigned to cluster 1 and 2. (B) Venn diagram showing the
overlap in genes that were found to be differentially expressed in at least three datasets of cluster 1
and seven datasets of cluster 2. (C) The result of an overrepresentation analysis (hallmark and gene
ontology (GO) biological processes of gene sets) that used 72 genes shared between the clusters, as
shown in (C), as input. (D) Log fold expression change of the genes that contributed to the enrichment
of hallmark gene sets shown in (C). (E) Log fold expression change of genes that are assigned to the
GO term “response to heat stress”. The scaling is identical as in (D).

To obtain extra insights into the patterns of transcriptome alterations at gene resolution,
we performed a leading edge analysis that uses the overrepresentation analysis as a base.
The leading edge constitutes the set of genes that is most responsible for the significant
enrichment result [51]. As a gene can be involved in multiple cellular processes, and thus
be assigned to various gene sets, exploring the overlap in the leading edges of genes might
lead to the identification of genes that are important drivers of the overall outcome [51]. We
performed a leading edge analysis for the complete dataset and separately for each cluster,
and included hallmark gene sets that were found to be enriched in at least one dataset
(Figure 4A). This led to the identification of genes that contributed to the enrichment of
multiple hallmarks in cluster 1 and 2 (Figure 4B). By setting a threshold for genes that
contributed to more than two gene sets in cluster 1, and more than four gene sets in cluster 2,
we found that eight genes overlapped (Figure 4C), and that these genes are involved in most
aforementioned shared hallmark gene sets, namely KRAS signaling, EMT, inflammatory
responses, and TNF-a signaling (Figure 4D). Thus, although a high degree of variation
occurs at the transcriptome level, particular alterations seem to be shared among part of
the datasets.
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Figure 4. Leading edge analysis reveals commonalities in gene expression profiles. (A) Leading
edge analysis based on hallmark gene sets that were found to be enriched in the overrepresentation
analysis. The analysis was carried out on all datasets, cluster 1, and cluster 2. Genes that appear in
a hallmark gene set are marked in blue. (B) Top 20 most found genes in the leading edge analysis
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of all datasets, cluster 1, and cluster 2. (C) Overlap in most frequently overexpressed genes that were
found at least three times in cluster 1, and 4 times in cluster 2. (D) Result of the overrepresentation
analysis for hallmark gene sets that used the eight overlapping genes between the clusters, as shown
in (C), as input.

3.5. The Small Heat-Shock Protein CRYAB Is Most Commonly Overexpressed after Hyperthermia

Although we found that a high degree of variability in transcriptome alterations
exists between the studies, we set out to validate the differential expression of Crystallin
Alpha B (CRYAB), a member of the small heat shock protein (HSP20) family, which was
found to be most frequently differentially expressed (Figure 5A,B). Three cancer cell lines
(i.e., HeLa, MCF-7, HT-29) that were used for the experiments of Amaya (2014), Andocs
(2015), and our unpublished data (Scutigliani 2022b), were subjected to hyperthermia,
and transcript expression was evaluated at different timepoints using a quantitative PCR
(Figure 5C). A robust induction of CRYAB expression was observed four hours after
hyperthermia treatment (Figure 5D). These findings resonate with the consensus that
CRYAB is heat-inducible [60], and confirm that our meta-analytic approach can provide
actionable information on mechanisms underlying the heat stress response.
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Figure 5. CRYAB expression is enhanced in response to hyperthermia. (A) Top 20 most frequently
differentially expressed genes in all datasets, and separately in cluster 1 and 2. (B) Fold change in
CRYAB expression in all datasets. The gray lines depict fold changes that were used as inclusion
criteria for differentially expressed in the meta-analysis (i.e., 1.5−1 ≥ fold change ≥ 1.5). (C) Schematic
representation of the pipeline that was used to quantify CRYAB expression using quantitative
polymerase chain reaction (qPCR). (D) Fold change in CRYAB expression at several time points after
hyperthermia (HT) in three cancer cell lines, based on three independent experiments. The horizontal
line depicts a fold change of 1.



Cancers 2023, 15, 113 14 of 17

4. Discussions

Studies that evaluated global gene expression alterations, or specifically genes regu-
lated by certain transcription factors, have shown that cells, in response to hyperthermia,
tune a broad range of pathways that involve thousands of genes [8,27,28,30–34,36,37,61].
Since the publication of a meta-analysis by Richter and colleagues [8], which focused on
comparing expression alterations across organisms, multiple studies have reported tran-
scriptomics data of heat-stressed cancer cells [43–45,47–49]. Here, we leveraged this data,
as well as our unpublished results, in an attempt to uncover universal patterns in the heat
stress response.

Our systematic literature search yielded datasets with diverse characteristics of the
thermal dose, the used cell line, the heating technique, and the timing of the transcriptomic
analysis (Table 2). An initial global analysis of the data (Figure 1) revealed a high degree
of variability between the transcriptome alterations reported by the studies, with several
thousands of genes being altered in a subset of datasets, and almost no alterations in
others. While it is known that the status of the transcriptome can change rapidly after heat
stress [31,33], there was no clear relation between the expression profiles and any of the
key experimental parameters. It should be noted, however, that, due to the limited number
of studies, such analysis was considerably underpowered, and a correlation cannot be
excluded. Thus, the high degree of variation and the inability to pinpoint the source of this
variability limits the strength of the conclusions that can be drawn from the analysis.

Through pathway analysis, we could confirm the alteration in expression of genes
involved in protein folding, cell cycle, mitosis and cell death, in line with the conclusions
drawn by the authors of the studies included in the meta-analysis (Figure 2). For instance,
Amaya and colleagues [45] pointed out the changes in cell cycle-related genes, in particular
those involved in G2/M transition and mitosis. In addition, perturbations of proteostasis
by hyperthermia have been observed in microarray data from the studies of Tabuchi and
Furusawa [43,48]. With the exception of global cellular stress, we did not observe, however,
transcriptome perturbations that were consistent across all datasets. While GSEA initially
revealed shared alterations in pathways that are understudied in the context of hyperther-
mia, such as various aspects of cellular metabolism (e.g., oxidative phosphorylation and
glycolysis), as well as mTOR and MYC signaling [62–65], an overrepresentation analysis
showed less commonalities. Interestingly, despite this high variation, we consistently found
an alteration of genes related to KRAS signaling, TNF-a signaling and EMT, which connects
with recent preclinical and clinical studies that assessed the role of KRAS signaling in cellu-
lar responses to hyperthermia [66,67], and in vitro data that shows attenuation of TNF-a
signaling [68,69]. It is noteworthy, however, that even the expression of genes that are
involved in these pathways varied greatly across the datasets (Figure 3). These inconsisten-
cies also have a negative impact on attempts to pinpoint genes that play a key role in these
pathway-level effects by leading edge analysis (Figure 4). In short, although the various
types of analyses applied here revealed interesting patterns, the patterns are not universally
shared by the analyses, studies or datasets. These results call for a more controlled and
comprehensive study that could evaluate the effects of various parameters, most notably
the thermal dose, the cell line, and the time after heat exposure, through Omics-based
approaches or global genome intervention techniques (i.e., CRISPR KO screening). Such
study could not only reveal novel, universal mechanisms driving cellular responses to
heat stress, but also potential druggable targets to improve the existing, or develop novel
therapies based on hyperthermia.
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