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Clonogenicity-based
radioresistance determines
the expression of immune
suppressive immune
checkpoint molecules after
hypofractionated irradiation
of MDA-MB-231 triple-
negative breast cancer cells
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Fridolin Grottker1,2,3, Clara M. Reichardt1,2,3, Jannik Alomo1,2,3,
Kerstin Borgmann4, Benjamin Frey1,2,3, Rainer Fietkau2,3,
Michael Rückert1,2,3† and Udo S. Gaipl1,2,3*†

1Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2Department of Radiation
Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Erlangen, Germany, 3Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany, 4Laboratory
of Radiobiology and Experimental Radiooncology, Department of Radiotherapy and Radiation
Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Only a subset of patients with triple-negative breast cancer (TNBC) benefits from

a combination of radio- (RT) and immunotherapy. Therefore, we aimed to

examine the impact of radioresistance and brain metastasizing potential on the

immunological phenotype of TNBC cells following hypofractionated RT by

analyzing cell death, immune checkpoint molecule (ICM) expression and

activation of human monocyte-derived dendritic cells (DCs). MDA-MB-231

triple-negative breast cancer tumor cells were used as model system.

Apoptosis was the dominant cell death form of brain metastasizing tumor

cells, while Hsp70 release was generally significantly increased following RT

and went along with necrosis induction. The ICMs PD-L1, PD-L2, HVEM, ICOS-L,

CD137-L and OX40-L were found on the tumor cell surfaces and were

significantly upregulated by RT with 5 x 5.2 Gy. Strikingly, the expression of

immune suppressive ICMs was significantly higher on radioresistant

clones compared to their respective non-radioresistant ones. Although

hypofractionated RT led to significant cell death induction and release of

Hsp70 in all tumor cell lines, human monocyte-derived DCs were not

activated after co-incubation with RT-treated tumor cells. We conclude that

radioresistance is a potent driver of immune suppressive ICM expression on the
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surface of TNBC MDA-MB-231 cells. This mechanism is generally known to

predominantly influence the effector phase, rather than the priming phase, of

anti-tumor immune responses.
KEYWORDS

radiotherapy, breast cancer, radioresistance, immune checkpoint molecules, dendritic
cells, tumor cell death
1 Introduction
Triple-negative breast cancer (TNBC) is defined by the absence

of estrogen receptor (ER), progesterone receptor (PR) and human

epidermal growth factor receptor 2 (HER2) expression. It accounts

for 10-20% of all breast cancer cases and is characterized by high

invasiveness, early metastasis (esp. lung- and brain-metastases), and

high recurrence rate. Despite similar therapeutic approaches

(surgery, chemo- and radiotherapy), TNBC remains the breast

cancer subtype with the worst prognosis. High heterogeneity, the

lack of hormone receptors and chemoresistance (triple-negative

paradox) leave little room for targeted therapy approaches (1–3).

Therefore, therapeutic strategies leading to improved therapy

outcomes are urgently needed.

Adjuvant radiotherapy (RT) is perceived as standard of care in

patients with early-stage breast cancer undergoing breast-

conserving surgery and complete mastectomy. The goal of it is to

reduce the risk of locoregional recurrence and breast cancer

associated mortality (4, 5). In this context moderately

hypofractionated RT (HFRT) has gained importance over the last

years (6). It is characterized by increased dose per fraction and

simultaneously, decreased fractions in total (40 Gy in total, 15-16

fractions in 3-5 weeks). In comparison to conventional

fractionation schedules (50 Gy in total, 25-28 fractions in 5-6

weeks), this approach offers lower acute toxic effects while

maintaining local tumor control (7–9). Recently, the FAST-

Forward trial indicated that a super-hypofractionated five-day

treatment schedule of postoperative radiotherapy (26 Gy, five

fractions in one week) is non-inferior to moderately

hypofractionated adjuvant radiation therapy (40 Gy, 15 fractions

in three weeks) in terms of local tumor control and side effects in

women with early-stage breast cancer (10).

RT in general is attributed to both immune stimulatory and

immune inhibitory effects. On the one hand, it can enhance anti-

tumor immunity by cell death-triggered release of neoantigens,

damage-associated molecular patterns (DAMPs, e.g. HMGB1, ATP,

Hsp70) and proinflammatory substances (e.g. CXCL10 and

CXCL16). Additionally, the activation of the cGAS/STING

pathway including consequent type I interferon production and

increased MHC-I expression for antigen presentation on the cell

surface of cancer cells is also activated by RT (11). Besides the

control of the immune checkpoint PD-L1/PD1 axis by interferons,

also less well understood immune checkpoint molecules are
02
triggered (12). Hypofractionated RT induces DNA damage and

impaired DNA repair results in transfer and accumulation of DNA

fragments in the cytoplasm of the tumor cells. As physiological

mechanisms for detection of cytosolic DNA (e.g. resulting from

invading pathogens), DNA sensing pathways as the cGAS/STING

pathway are triggered that activate the innate immune response

through a signaling cascade leading to upregulation of cytokine and

interferon production (13). This is also a common mechanism in

triple negative breast cancer that impacts on tumor cell survival and

immune modulation (14, 15). On the other hand it was shown by

Rückert et al., that HFRT in particular is predestined to induce

immunogenic cell death (ICD) (16), which is defined as “a form of

regulated cell death (RCD) that is sufficient to activate an adaptive

immune response in immunocompetent syngeneic hosts” (17)

leading to T cell-mediated immune responses against tumor

antigens. Based on that, RT has been reported to work as in situ

cancer vaccine making abscopal effects possible (18). On the other

hand, RT can also mediate immune suppressive effects, for example

by inducing an increased expression of immune suppressive

immune checkpoint molecules (ICMs), the release of immune

inhibitory cytokines (e.g. TGF-b) and the infiltration of T

regulatory cells (Tregs) as well as myeloid derived suppressor cells

(MDSC) into the tumor area (11). The T cell suppression in the

effector phase of the immune response mediated via immune

inhibitory ICM interactions, can be antagonized by immune

checkpoint inhibitors (ICIs). Consequently, a tumor-antigen

specific cytotoxic T cell response can be restored (19, 20). That

makes combinations of radiotherapy and immune checkpoint

blockade (ICB) reasonable.

Although breast cancer has been perceived historically as

immunologically “cold” tumor, it becomes more and more

evident that the different subtypes differ a lot regarding their

respective immunogenicity. TNBC seems to be the most

immunogenic subtype, because of its higher tumor infiltrating

lymphocyte (TIL) counts and tumor mutational burden (TMB)

(21). Supporting this, ICI therapy particularly benefits those breast

cancer patients suffering from TNBC (22). Therefore, a growing

number of clinical trials examining the efficacy of ICB in patients

with TNBC have recently been conducted. Unfortunately, only a

small minority of these patients has been shown to benefit from

anti-PD-(L)1 monotherapy in terms of overall response rate (ORR)

(23). However, Ho et al. reported that therapeutic approaches

combining RT and ICB could be superior to ICI monotherapy

(24). In this context radioresistant cancer cells remain a major
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challenge in TNBC treatment because of their capacity to form

local- and distant recurrence.

In the past, radioresistance of a cell has always been defined

based on the ability to form new cell colonies after being irradiated

(25, 26). Since presumably radiation-resistant (breast) cancer cells

are responsible for recurrence or metastasis after RT, it may not

only be radioresistance alone but rather the combination with

immune evasion allowing breast cancer cells to survive and form

clinically apparent tumors. Therefore, we hypothesized that

radioresistance itself could significantly drive the immunogenic

properties of breast cancer cells. To investigate this for the first

time, we treated two different radioresistant (RR) and two non-RR

MDA-MB-231 cell lines with hypofractionated RT (5 x 5.2 Gy) and

analyzed cell death induction by AnnexinV/Propidium iodide

staining, Hsp70 release and the activation of human monocyte-

derived dendritic cells (DCs) after previous co-cultivation.

Furthermore, the immune checkpoint molecule expression on the

tumor cell surface was examined. Our key finding was that the

expression of immune suppressive ICMs was significantly increased

in the radioresistant cell lines after RT.
2 Materials and methods

2.1 Cell lines and cell culture

Four different human MDA-MB-231 cell lines with differences

in radioresistance (according to their behaviour in the clonogenic

assays) were investigated (27). Besides the wildtype (WT), a brain-

metastasizing (BR) clone was used. It was created by Yoneda et al.,
Frontiers in Oncology 03
2001 by inoculating the MDA-MB-231 WT cells into

immunodeficient mice. MDA-MB-231 cells in brain metastases

were isolated, grown in culture and reinoculated. This procedure

was repeated until only brain metastases occurred after injection

into immunodeficient mice (28). Radioresistant (sub)clones (WT

RR, BR RR) were generated by irradiation of the WT and BR clone

with 4 Gy, pooling of the surviving cells, cultivating them for 10-14

days and irradiating them again. This procedure was repeated to a

total dose of at least 40 Gy. Radioresistance was checked after the

last irradiation with clonogenic assay (Figures 1A, B).

All four cell lines were cultivated in Dulbecco’s modified Eagle’s

medium (DMEM, Pan-Biotech GmbH, Aidenbach, Germany)

supplemented with 10% fetal bovine serum (FBS, Biochrom AG,

Berlin, Germany) and 1% Penicillin-Streptomycin (PenStrep, Gibco,

Carlsbad, CA, USA). Peripheral blood mononuclear cells (PBMCs)

derived from healthy human donors were cultured in “DC medium”

consisting of RPMI-1640 (Merck, Darmstadt, Germany) supplemented

with 1% Pen/Strep, 1% L-Glutamine (Gibco, Carlsbad, CA, USA), 1%

Hepes buffer (Gibco Life Technologies, Waltham, MA, USA) and 1%

human serum heat inactivated (Gibco, Carlsbad, CA, USA). All cells

were cultivated in a standardized and humidified environment (37°C,

5% CO2 and 95% humidity).
2.2 Treatments and sampling

The day after seeding, the four MDA-MB-231 cell lines were

irradiated for five days with 5.2 Gy of X-rays (120 kV, 22.4 mA for

0.7 min; X-Ray tube Isovolt Titan, GE Sensing & Inspection, Boston,

USA), respectively. The cells were harvested with trypsin (Gibco Life
B

A

FIGURE 1

Generation of radioresistant breast cancer clones is done by repeated irradiation of MDA-MB-231 breast cancer cells. Radioresistant (sub)clones of
MDA-MB-231 cells were generated by repeatedly irradiating MDA-MB-231 wildtype (MDA-MB-231) and brain metastasizing MDA-MB-231 (MDA-MB-
231 BR) tumor cells (A). This resulted in more radioresistant clones (MDA-MB-231 RR and MDA-MB-231 BR RR), as verified by clonogenic survival
assay (B). Data are from three independent experiments. **p < 0.01; ***p < 0.001 (Student’s t-test).
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Technologies, Carlsbad, CA, USA) on day 6, 7 and 8 for cell death

analysis, on day 7 for ICM expression analysis and on day 6 to evaluate

the DC activation potential of untreated and treated tumor cells after

co-incubation. Hsp70 concentration in the cell culture supernatant was

determined 48 hours after irradiation (day 7) via ELISA.
2.3 Cell death analysis and clonogenic
survival assay

2 × 105 cells were stained with 100 ml of cell death staining solution
(1 ml of Ringer’s solution (Fresenius Kabi, Bad Homburg, Germany),

0.75 ml/ml of AnnexinV-FITC (AxV) (1 mg/ml) (GeneArt,

Regensburg, Germany), and 1.0 ml/ml of Propidium iodide (Pi) (1

mg/ml) (Sigma-Aldrich, Munich, Germany)). After incubation for 30

minutes, the measurement was performed on a CytoFLEX S flow

cytometer (Beckman Coulter, Brea, CA, USA) and analyzed with the

Kaluza Analysis software (Beckman Coulter, Brea, CA, USA).

To determine the clonogenic potential of the breast cancer cells,

250 tumor cells/well were seeded in a 6-well plate 6h before irradiation.

Afterwards they were irradiated with the indicated doses and cultured

for two weeks, fixed and stained with 1% crystal violet in ethanol

(Sigma-Aldrich, St. Louis, MO). Colonies with more than 50 cells were

counted and normalized to mock-treated samples. The survival curves

were calculated by adding a curve fit (dek(hx)). All calculations were

performed with GraphPad Prism.
2.4 Immune checkpoint molecule
expression analysis

2 × 105 cells were stained with staining solution containing FACS

buffer (PBS (Sigma-Aldrich, Munich, Germany), 2% FBS and 4% 0.5

mM EDTA (Carl Roth, Karlsruhe, Germany)) and Zombie NIR alone

or Zombie NIR and antibodies (Table 1). Before the measurement at

the CytoFLEX S flow cytometer, the cells were incubated for 30

minutes at 4°C. To correct for treatment-related autofluorescence,

the DMFI (mean fluorescence intensity) of every ICM was calculated

by subtracting the MFI of the Zombie-only-stained sample (AF ctrl)

from the MFI of the Zombie-and-antibody stained one.
Frontiers in Oncology 04
2.5 Quantitative measurement of Hsp70 in
the supernatant of untreated and treated
MDA-MB-231 cells

To examine the concentration of tumor cell released Hsp70, the

supernatant of the cell cultures was analyzed using a sandwich

ELISA assay (Human/Mouse/Rat Total HSP70/HSPA1A ELISA,

R&D Systems, Minneapolis, MN, USA). It was performed

according to the manufacturer’s instructions.
2.6 Isolation of human peripheral blood
mononuclear cells and differentiation to
human monocyte-derived dendritic cells

On day 0, human peripheral blood mononuclear cells (PBMCs)

were isolated from leukoreduction system chambers (LRSC) of

healthy human donors via density gradient centrifugation in

SepMate™ PBMC Isolation Tubes (Stemcell, Vancouver, Canada)

and Lymphoflot (Biotest AG, Dreieich, Germany). Consequently,

they were washed twice at 4°C with PBS (Sigma-Aldrich, Munich,

Germany)/0.5 mM EDTA (Carl Roth, Karlsruhe, Germany) and

RMPI-1640, respectively. After that, 30 × 106 cells each were seeded

on IgG-pre-coated cell culture dishes in 10 ml of DC medium and

incubated for 1 h. Subsequently, non-attached cells were removed

and 10 ml of fresh DC medium was added.

On day 1, the old DC medium was removed again and 10 ml of

RPMI containing 800 U/ml (0.57 ml/ml) of GM-CSF (MACS

Miltenyi Biotec, Bergisch Gladbach, Germany) and 500 U/ml (5

ml/ml) of IL-4 (ImmunoTools, Friesoythe, Germany) were added to

each cell culture dish. Two days later, on day 3, 4 ml of RPMI and

800 U/ml (0.57 ml/ml) of GM-CSF and 500 U/ml (5 ml/ml) of IL-4

were added. On day 5, 4 ml of RPMI with half of the previously used

amount of GM-CSF (400 U/ml = 0.285 ml/ml) and IL-4 (250 U/ml =

2.5 ml/ml) were added.
2.7 Maturation induction of immature DCs
via maturation cocktail or co-incubation
with untreated and treated MDA-MB-231
cell lines

Six days after the isolation of the PBMCs, the human monocyte-

derived immature DCs (iDCs) were harvested mechanically using a

serological pipette. After that, 0.75 × 105 iDCs were put into each 6-well

in 2 ml of DCmedium. In case of co-incubation with non-irradiated or

irradiated tumor cells, 1.5 × 105 tumor cells including 2 ml of their

respective cell culture supernatant were added. Positive controls

(without tumor cells) were established by using a maturation cocktail

(MC) containing 13.16 ng/ml of IL-1b (ImmunoTools, Friesoythe,

Germany), 1000 U/ml of IL-6 (ImmunoTools, Friesoythe, Germany),

10 ng/ml of TNF-a (ImmunoTools, Friesoythe, Germany) and 1 mg/ml

of PGE-2 (Pfizer, Berlin, Germany).
TABLE 1 List of antibodies used to analyze the expression of immune
checkpoint molecules on the surface of non-irradiated and irradiated
MDA-MB-231 tumor cells via multicolor flow cytometry.

Marker Fluorochrome Manufacturer

PD-L1 (CD 274) BV 605 Biolegend

PD-L2 (CD 273) APC Biolegend

ICOS-L (CD 275) BV 421 BD Horizon

HVEM (CD 270) APC Biolegend

TNFRSF9 (CD137-L) BV 421 Biolegend

OX40-L (CD252) PE Biolegend

Live/dead Zombie NIR Biolegend
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2.8 Maturation

The expression of common activation markers on the cell surface

of the DCs was analyzed 48 hours after co-incubation with untreated

and treated MDA-MB-231 cells using multicolor flow cytometry.

Therefore, the DCs were harvested mechanically at first. Then, the

first half of all DCs in each 6-well was stained with a Zombie-only

FACS buffer staining solution, the second half was stained with one

containing Zombie Yellow and antibodies in addition (Table 2). After

incubation for 30 minutes at 4°C, the MFI of the different samples was

measured at the CytoFLEX S flow cytometer. The DMFI of every

activation marker was calculated by subtracting the MFIs of the

Zombie-only from the fully stained sample.
2.9 Statistical analyses

For statistical analyses the Student’s t-test, the Mann-Whitney

U test and the Kruskal-Wallis test with multiple comparisons were

used as respectively indicated in the figure legends.
3 Results

3.1 Radioresistant clones of
MDA-MB-231 cells can be generated
by repeated irradiation

MDA-MB-231 wild type and brain metastasizing tumor cells were

repeatedly irradiated with 4 Gy to generate more radioresistant clones,

as being verified by standard clonogenic survival assay (Figure 1). The

four different human MDA-MB-231 cell lines, MDA-MB-231 WT,

MDA-MB-231 BR (brain metastasizing) and the corresponding more

radioresistant clones (RR) were used for the consecutive analyses.
3.2 Radiation-induced apoptosis of
MDA-MB-231 cells depends on
tissue origin of the tumor cells
rather than on radioresistance

We then analyzed cell death 24 h – 72 h after hypofractionated

irradiation of the fourMDA-MB-231 tumor cell lines (Figures 2A, B).
Frontiers in Oncology
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Apoptosis, rather than necrosis (Figures 2C–E), was the predominant

cell death mechanism and, differed significantly between the

irradiated WT and its clones. Apoptosis increased over time,

whereas the ratio between the respective cell lines remained similar.

Both cell lines that had been derived from brain metastases (BR, BR

RR) were very radiosensitive in terms of apoptosis induction and

succumbed to it significantly more frequent in comparison to the

WT. BR RR even showed the greatest apoptosis rate of all four cell

lines despite its radioresistance in the clonogenic assay (Figure 1B),

closely followed by BR. This was different in the WT RR clone that

was significantly less sensitive to irradiation with regard to apoptosis.

Similarly, necrotic cell death (Figures 2F–H) was significantly

increased in cell lines derived from brain metastases (BR, BR RR)

compared to the WT cell line 24 h after the treatment. Further, only

the WT RR cell line showed significantly less necrosis than the WT.

However, 48 and 72 hours after irradiation necrotic cell death was

significantly decreased in all clones compared to the WT.
3.3 Radioresistance drives the expression
of immune suppressive checkpoint
molecules following irradiation
The expression of the investigated ICMs did not vary

considerably between the untreated WT and its clones. There was

a similar base level of ICM expression between all four different cell

lines, with just one exception: the immune stimulatory ICM

CD137-L was significantly lower expressed in all non-irradiated

clones that were originally derived from the WT.

Irradiation with 5 × 5.2 Gy resulted in a significant upregulation

of both immune suppressive (PD-L1, PD-L2 and HVEM)

(Figures 3C–E) and immune stimulatory (ICOS-L, CD137-L,

OX40-L) (Figures 3F–H) immune checkpoint molecules on the

cell surface of the treated cells compared to the untreated ones in all

examined cell lines. CD137-L as an exception thereof however, was

significantly downregulated on the WT after irradiation

(Figures 3A–H).

However, the radioresistant cell lines (WT RR, BR RR) were

characterized by a significantly increased expression of especially

the immune suppressive ICMs PD-L1, PD-L2 and HVEM in

comparison to the respective non-radioresistant clone.
3.4 Danger signal Hsp70 is released
after irradiation irrespective of the
tumor cell clone
The release of the damage-associated molecular pattern Hsp70

was significantly increased from the irradiated compared to the

respective non-irradiated MDA-MB-231 cells 48 hours after

irradiation (Figure 4). However, there was no significant

difference between the irradiated WT and its different clones.
TABLE 2 List of antibodies used to analyze the expression of various
activation markers on the surface of DCs via multicolor flow cytometry.

Marker Fluorochrome Manufacturer

CD70 FITC Biolegend

CD83 PE-Cy7 eBioscience

CD80 APC Miltenyi Biotec (MACS)

CD86 Briliant Violet BioLegend

Live/dead Zombie Yellow Biolegend
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3.5 Neither non-irradiated nor irradiated
MDA-MB-231 cells and their supernatants
increase the expression of common
activation markers on human
monocyte-derived DCs

To investigate the potential of treated and untreated RR and

non-RR tumor cells to prime DCs, they were co-incubated with

human monocyte-derived DCs (Figures 5A–C). Incubation of the

DCs with the maturation cocktail (MC) led to a significant up-

regulation of the four analyzed common activation markers CD70,

CD80, CD83 and CD86 (Figures 5D–G). However, DCs which were

co-incubated with either non-irradiated or irradiated WT, WT RR

or BR RR cells and their respective supernatants, did not increase
Frontiers in Oncology 06
the expression of common activation markers compared to

unstimulated, immature DCs (w/o MC).
4 Discussion

According to preclinical data, immunogenic cell death

induction has been attributed to hypofractionated irradiation

schedules (29, 30) which are more and more clinically applied for

RT of breast cancer. In contrast to apoptosis which is considered to

have a rather suppressive effect on the immune system (31),

necrotic cell death is more immune stimulatory because of the

release of potentially immunogenic neoantigens and DAMPs such

as Hsp70. Necrosis has been reported to be primarily activated by
A

B

D E

F G H

C

FIGURE 2

Cell death induction after irradiation of the four MDA-MB-231 cell lines is dependent on tissue origin rather than on radioresistance. (A) After seeding on
day 0, the four MDA-MB-231 cell lines, the WT and the WT-derived brain metastasis clone (BR) as well as the radioresistant (RR) clones derived from
those cells (WT RR, BR RR), were treated with 5 × 5.2 Gy. On day 6, 7 and 8, cell death forms were analyzed with Annexin V/Propidium iodide (AxVPi)
staining via multicolor flow cytometry. The gating strategy is shown in (B). After pre-gating on the singlets and consequently excluding the debris, the
remaining cells were identified as viable, apoptotic, or necrotic as presented. The percentage of apoptosis (C–E) and necrosis (F–H) of the different cell
lines 24 (C–F), 48 (D, G) and 72 hours (E–H) after irradiation is shown as median with interquartile range. The data are from nine independent
experiments. For statistical analysis, each treated clone was compared to the WT via Mann-Whitney U test (*p < 0.05, **p < 0.01, ***p < 0.001).
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higher doses of ionizing radiation (hypofractionation). It is the

desired form of cell death in the context of anti-tumor immune

response initiation (18, 32). Unlike other breast cancer subtypes,

TNBC is characterized by a rather high TMB. That in turn, leads to

the production of neoantigens (33). Consequently, its higher

immunogenicity makes it a potential candidate for ICB.

To get first hints about the immunogenic phenotype of MDA-

MB-231 breast cancer cells after hypofractionated irradiation and in

dependence of their radioresistant properties and tissue origin (e.g.

metastatic spread to the brain), cell death forms were determined of

the four different clones. Hypofractionated irradiation induced a
Frontiers in Oncology 07
mixture of apoptosis and necrosis in the four cell lines (Figure 2).

However, in comparison to the two WT cell lines, both brain-

metastasized clones showed to be more sensitive to X-rays leading

to strongly apoptosis-dominating cell death. It has been reported

that metastatic spread to the brain has an impact on radioresistance

of MDA-MB-231 cells as shown by a clonogenic assay (34) which

could be due to the influence of the brain microenvironment on

gene expression patterns of the tumor cells, as also indicated by the

findings of Park et al. (35). Radioresistance was verified as

previously described (27). The clonogenic survival (Figure 1)

confirms that the RR clones have enhanced potential to still form
A

B

D E

F G H

C

FIGURE 3

Radioresistance (RR) drives the expression of immune suppressive checkpoint molecules on the surface of the four presented MDA-MB-231 cell lines 48
hours after hypofractionated irradiation. The gating strategy is presented in (A) After pre-gating on the singlets, the debris was excluded. Then the viable
cells were detected via the Zombie NIR viable/dead stain. Immune checkpoint molecule (ICM) expression is presented in the graphs as DMFI (mean
fluorescence intensity). It was calculated by subtracting the MFI of the Zombie-only-stained samples (AF ctrl) from the respective Zombie-and-antibody-
stained samples of various ICMs expressed on the cell surface of the four cell lines. Exemplarily primary data are shown for PD-L1 and PD-L2 detection.
The WT and the WT-derived brain metastasis clone (BR) as well as the radioresistant (RR) clones derived from those cells (WT RR, BR RR) were treated
with 5 × 5.2 Gy. (B) The expression of immune suppressive (PD-L1: (C), PD-L2: (D), HVEM: (E) and immune stimulatory (ICOS-L: (F), CD137-L: (G),
OX40-L: (H) ICMs is presented as median with interquartile range. Data are from seven independent experiments. For statistical analysis, a Mann-
Whitney U test was performed to compare untreated and treated cells within one cell line. The same test was used to compare an irradiated
radioresistant cell clone with its respective non-radioresistant one. A Kruskal-Wallis test with multiple comparisons was used to examine statistical
differences between the ICM expression of the different clones compared to the WT within the respective untreated (#) and treated (*) group. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001, #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.981239
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gehre et al. 10.3389/fonc.2023.981239
colonies after radiation exposure compared the non-RR clones.

Radioresistance was not generally correlated to the capability of

tumor cell death induction, as the BR clones had similar amounts of

apoptotic and necrotic cells after RT with 5 x 5.2Gy. The

relationship between surviving fraction after radiation exposure

and the percentage of apoptotic cells at the first days after the same

dose of exposure is complex (36). We conclude that radioresistance

of the BR cells might also be reflected by cell death forms at later

time points than 72 hours and this is already indicated by slightly

reduced percentages of necrotic cells of the BR RR clone.

Besides antigenicity, ICD also depends on adjuvanticity (37).

Therefore, in the context of cancer cell death, this was exemplarily

analyzed by quantifying the Hsp70 concentration in the

supernatant of non-irradiated and irradiated tumor cells. In

accordance with earlier examinations by Kötter et al., (38). Hsp70

release was significantly increased by irradiated cancer cells in

comparison to the respective untreated ones (Figure 4). In

sufficient quantities, Hsp70 can stimulate the uptake of tumor

antigens (39) and further activate dendritic cells (40). Linder et al.

suggested that extracellular Hsp70 is released predominantly by

active mechanisms and not mainly during cell death (41).

Compared to non-irradiated cells, our analyses showed that

triple-negative breast cancer cells after radiation therapy have an

increased secretion of HSP70 which is independent of the

radioresistance. This suggests, as already observed for other

tumor entities, that release of HSP70 is mostly connected to

necrosis induction (42) of tumor cells (see Figure 2G) rather than

to radiosensitivity being determined with clonogenic assays.
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However, radiosensitivity is linked to the immune surface

phenotype of the tumor cells, most likely being triggered by

activation of DNA sensing pathways in the cytosol of the cells (43).

DCs in general play a key role in T cell priming and therefore

provide the basis for T cell-mediated anti-tumor immune

responses. To get first hints whether the hypofractionated

irradiation of the MDA-MB-231 breast cancer cells affects the

priming capabilities of DCs, we examined the expression of DC-

specific activation markers after co-incubation with untreated and

treated tumor cells. However, although hypofractionated RT

induced cell death and the release of Hsp70 in all four cell lines,

we did not detect increased expression of any of the investigated

activation markers (CD70, CD80, CD83 and CD86) on the surface

of the DCs after co-incubation, neither with untreated nor with

treated cancer cells in this in vitro setting. This suggests that

irradiation of breast cancer cells might rather affects the effector

phase of anti-tumor immune responses than the priming phase.

However more detailed analyses are needed in the future such as

how certain DC subsets might be affected. Pilones and colleagues

recently discovered that Batf3-dependent conventional dendritic

cells type 1 (cDC1) are required for priming RT-induced of tumor-

specific CD8+ T cells (44).

Consequently, we analyzed whether the chosen treatment

schedule would influence the expression of ICMs on the tumor

cells. Most research on immune checkpoint molecules in breast

cancer has focused on the PD-1/PD-L1 pathway so far.

Monoclonal antibodies (mABs) which antagonize these immune

suppressive ICMs and consequently help to restore a potent anti-

tumor immune response, have recently led to remarkable long-lasting

benefits, but unfortunately just in a minority of (metastatic) cancer

patients (24). In this context, higher PD-L1 expression in the tumor

has been associated with improved response rates to anti-PD-(L)1

therapies in various cancer types, including TNBC (45–47). Given the

predictive value of PD-L1 expression, knowledge about the behaviour

of further ICMs in response to irradiation is currently missing but

may be beneficial to optimize future radioimmunotherapies (RITs).

Therefore, we did not only analyse the expression of PD-L1, but also

that of other key ICMs on MDA-MB-231 breast cancer clones.

Consistent with our data, the immune suppressive ICM PD-L1

has been reported to be expressed on the surface of many tumor

cells (19, 20, 48, 49). In line with previous in vitro and in vivo

examinations using various cancer cell lines and models, we

revealed that it is not just PD-L1 which is upregulated by RT, but

rather both immune inhibitory and immune stimulatory (50–53)

ICM expression is significantly increased on the surface of TNBC

cells following (hypofractionated) irradiation. This has already been

demonstrated in other settings and tumor entities (54, 55).

However, a key new finding of our analyses is that particularly

immune suppressive checkpoint molecules were significantly more

upregulated on the cell surface of radioresistant MDA-MB-231

clones. This indicates for the first time that radioresistant tumour

cells do not necessarily have a more stem cell-like phenotype, but

might rather suppress the immune system by upregulation of

immune suppressive molecules following radiation exposure.

This, together with reduction of the dsDNA content in the tumor

cells that attenuates the cGAS/STING pathway and consecutively
FIGURE 4

Hsp70 release was significantly increased from irradiated compared
to non-irradiated MDA-MB-231 cells. The graph shows the
concentration of Hsp70 per 105 cells (ng/ml) in the cell culture
supernatant of WT and the WT-derived brain metastasis clone (BR)
as well as the radioresistant (RR) clones derived from those cells (WT
RR, BR RR), either untreated (blue bars) or after irradiation with 5 ×
5.2 Gy (brown bars). Data is presented as median with interquartile
range. Data are from six independent experiments. For statistical
analysis, a Mann-Whitney U test was performed to compare
untreated and treated (5 × 5.2 Gy) cells within one cell line (*p <
0.05, **p < 0.01). Furthermore, a Kruskal-Wallis test with multiple
comparisons was used to compare Hsp70 concentrations between
the treated WT and its clones.
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the INFgamma-dependent immune activation (27), contributes to

immune suppression. Future analyses will have to deal with

connections between RT-induced intracellular modifications and

modulations on the tumor cell surface to obtain a complete picture

of immune suppressive mechanisms in more radioresistant tumor

cell clones. Similarly, Jang et al. found in their single cell RNA-based

investigation that PD-L1 expression was increased on radioresistant

– based on the radiosensitivity index (RSI) – breast cancer cells.

These cells included in particular basal, HER2 and luminal B
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subtypes and were associated with a higher risk of recurrence

(56). Based on our data, we conclude that the immunological

phenotype of (breast) cancer cells is strongly shaped by

radioresistance. To the best of our knowledge, the underlying

mechanisms therefore have not been described in the literature so

far and have to be addressed in even more detail in the future,

particularly in the context of innovative radiation oncology (57). As

TNBC is characterized by a higher infiltration of immune cells it has

be suggested that that these patients are more responsive to
A B
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FIGURE 5

Neither untreated nor treated (5 × 5.2 Gy) MDA-MB-231 cells increased the expression of activation markers on dendritic cells (DCs) 48 hours after
co-incubation. (A) Human monocyte-derived DCs were differentiated from peripheral blood mononuclear cells (PBMCs) for 5 days before they were
co-incubated with untreated and treated wild type (WT) MDA-MB-231 cells or radioresistant (RR) clones. 48 hours later, the expression of common
DC activation markers was examined using multicolor flow cytometry. The gating strategy is presented in (B) After pre-gating on the singlets, the
viable cells were detected. Then, gating on CD11c positive cells identified DCs. CD70 (D), CD83 (E), CD80 (F), CD86 (G) expression on the cell
surface of DCs is presented in the graphs as DMFI. It was calculated by subtracting the Zombie-only-stained samples (AF ctrl) from the respective
Zombie-and-antibody-stained samples, here shown exemplarily for CD70 (C). The data is presented as median with interquartile range. Data are
from seven independent experiments. For statistical analysis, a Mann-Whitney-U test was used to compare activation marker expression on DCs
with and without (w/o) maturation cocktail (MC). Further, a Kruskal-Wallis test was performed to compare DCs w/o MC with DCs which had been
co-cultured with either untreated or treated cancer cells, respectively. (*p < 0.05, **p < 0.01, ***p < 0.001, #p < 0.05).
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immunotherapy, but, as already stated, only a minority of these

patients benefit from anti-PD-(L)1 monotherapy, which can be

improved by adding RT. To achieve further improvement, targeting

of additional immune checkpoint molecules should be envisaged

(58). Our analyses revealed that HVEM has similar expression

patterns such as PD-L1 and PD-L2 and it has been suggested that

HVEM negatively correlates with overall survival in breast cancer

patients (59). For exploration in clinical application double

blockade of the PD-1/PD-L1/2 axis and HVEM in combination

with RT should be taken into consideration.
5 Conclusion

Basically, there are twomainmodels used to explain tumorigenesis.

Both have challenged each other since their existence. On the one hand,

there is the cancer stem cell concept which states that so called “cancer

stem cells” (CSC) are responsible for cancer development due to their

capacity to differentiate into phenotypically diverse cancer cells. Many

properties have been attributed to CSCs, amongst others

radioresistance. On the other hand, there is the clonal evolution/

stochastic model. It assumes that normal cells can acquire distinct

mutations over time and become cancer cells (60, 61). Our data

indicate that – independent of the CSC concept with its

radioresistant stem cells – radioresistant TNBC clones could survive

radiotherapy and subsequently, evade the immune response by

increased immune suppressive ICM expression. During the last

decade it has become evident that the immune system plays an

important role in influencing the response to RT treatment and

prognosis in many solid tumor entities, including in breast cancer.

The most beneficial dose of radiation for induction of anti-tumor

immune responses could not be defined until today, but several

preclinical, first clinical observation and in silico simulations support

the hypothesis that hypofractionated RT is the most immunogenic one

(62). Following Stereotactic Ablative Body Radiotherapy (SABR), e.g.,

there is evidence of systemic immune activation in patients with

increased PD1 expression (63). Future studies should nevertheless

additionally investigate conventional radiation therapy and

moderately hypofractionated radiation therapy with regard to

radioresistance and immune phenotype of breast cancer cells. In our

analyses we aimed to refer to current clinical approaches focusing on

more hypofractionated schedules, as already outlined above (10).

Generally, the increased immune suppressive ICM expression could

then in turn form the basis for recurrence and newly emerging

metastases. Therefore, we speculate that the significance of ICB may

increase in parallel to the number of experienced radiotherapy sessions

and that targeting different ICMs at once might be necessary in breast

cancer. We finally want to stress that the key focus was set on the

immune phenotype of the radioresistant breast cancer cells in the here

presented analyses. Future work will have to focus on even more

detailed functional analyses with DC subsets and consecutive T cell

activation. Furthermore, analysis of the expression of ICMs in breast

cancer specimen tissue microarray with radiation sensitive- and
Frontiers in Oncology 10
radiation resistant-patient should provide deeper insights how

radiosensitivity might be connected to immune phenotypes of breast

cancer tumor cells.
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