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Simple Summary: Radio-sensitizing effects of moderate or mild hyperthermia (heating up tumor
cells up to 41–43 ◦C) in combination with radiotherapy (thermoradiotherapy) have been evaluated for
decades. However, how this combination might modulate an anti-tumor immune response is not well
known. To investigate the dynamic behavior of immune–tumor ecosystems in different scenarios,
a model representing an artificial adaptive immune system in silico is used. Such a model may be
far removed from the real situation in the patient, but it could serve as a laboratory to investigate
fundamental principles of dynamics in such systems under well-controlled conditions and it could be
used to generate and refine hypothesis supporting the design of clinical trials. Regarding the results
of the presented computer simulations, the main effect is governed by the cellular radio-sensitization.
In addition, the application of hyperthermia during the first radiotherapy fractions seems to be
more effective.

Abstract: There is some evidence that radiotherapy (RT) can trigger anti-tumor immune responses.
In addition, hyperthermia (HT) is known to be a tumor cell radio-sensitizer. How HT could enhance
the anti-tumor immune response produced by RT is still an open question. The aim of this study
is the evaluation of potential dynamic effects regarding the adaptive immune response induced by
different combinations of RT fractions with HT. The adaptive immune system is considered as a
trainable unit (perceptron) which compares danger signals released by necrotic or apoptotic cell death
with the presence of tumor- and host tissue cell population-specific molecular patterns (antigens). To
mimic the changes produced by HT such as cell radio-sensitization or increase of the blood perfusion
after hyperthermia, simplistic biophysical models were included. To study the effectiveness of the
different RT+HT treatments, the Tumor Control Probability (TCP) was calculated. In the considered
scenarios, the major effect of HT is related to the enhancement of the cell radio-sensitivity while
perfusion or heat-based effects on the immune system seem to contribute less. Moreover, no tumor
vaccination effect has been observed. In the presented scenarios, HT boosts the RT cell killing but it
does not fundamentally change the anti-tumor immune response.

Keywords: systems medicine; immune system in silico; perceptron; antigen pattern; danger signal;
fractionation; immune response

1. Introduction

Preclinical and, to some extent, clinical research demonstrated that radiotherapy (RT)
is able to modulate anti-tumor immune responses [1–4]. The idea of activating the immune
system by radiation leads to the question of how hyperthermia (HT) in combination with
RT could help to trigger or amplify such an anti-tumor response.
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Radio-sensitizing effects of HT in combination with RT (thermoradiotherapy, HT-RT)
have been evaluated for decades. Effects have been investigated on molecular [5–7], cellu-
lar [8,9], and tissue scale [10–12]. Regarding the tissue level, increased perfusion leading to
a removal of acidic metabolites [13–15] and re-oxygenation [16–18] have been discussed
by several authors. Re-oxygenation is known as a radio-sensitizing factor [19,20], but the
effect of, e.g., combining 3–6 of total 32 fractions of RT with HT may be very limited [21],
especially when considering time gaps between application of HT and RT of 30–120 or
more minutes in clinical routine treatments. However, the wash-out of acidic metabolites
by increased perfusion below 42–43 ◦C could improve the immune system response [22–25].
In addition, increased perfusion may improve the accessibility for immune cells, leading
to a better detection of antigenic patterns and enhanced tumor–immune cell interaction
via related to danger signals such as Heat Shock Proteins (HSP) [26–28]. There seem to be
many contributing factors and it is difficult to identify the key processes leading to the
clinically observed improved therapy outcome of HT-RT. Whereas on the cellular level,
more or less controlled experiments in vitro may help to understand molecular or cellular
aspects of the additive or synergistic heat- and radiation-induced responses, the dynamic
interaction of the immune system with the tumor tissue is patient-specific and would
require a time-resolved monitoring of immune cell activity in the body or at least, in the
tumor environment. This information is hard to access during clinical trials since, for
example, repeated (frequent) biopsy material has to be sampled from the patients and
analyzed.

However, treatment optimization would require a profound understanding of the
dynamic response of tumor and host tissue as well as the immune system. Whereas
clinical trials may generate knowledge about the effectiveness of specific aspects such as
fractionation schemes and can be seen as acid tests for novel approaches for anti-cancer
treatments, the investigation of the dynamic behavior should include the analysis of time-
resolved data representing the complex interaction in the tumor-host-immune system.
Such a tumor-host-immune system may be considered as an ecosystem [29–31]. This may
include the interaction between sub-populations of tumor cells, tumor-associated cells (e.g.,
fibroblasts), host tissue, endothelial cells, and immune cells. Understanding the dynamics
in such a complex ecosystem may be pivotal as soon as the therapy outcome is governed by
the dynamic interactions between the different actors in the system. Regarding the immune
system as a part of the whole, the complexity is enormous since not only the immune cells
(e.g., T-cells or macrophages) in the tumor compartment but the systemic response has to
be considered as well [32].

At a first glance, there seems to be no way to get a profound insight into the complex
dynamic interactions in such an immune–tumor ecosystem. Regarding the effects of HT, the
processes taking place on different scale levels may influence the system in an obscure man-
ner, but the identification of key processes would support the optimization of hyperthermia
in combination with RT (e.g., timing of HT sessions and RT fractions). The different therapy
regimens may be tested in clinical trials. Mathematical models and computer simulations
could be used to guide the search for optimal conditions for HT-RT. The complexity will
probably hamper the development of predictive models covering all the aspects relevant
for therapy response in vivo or in patient. The situation may be different as soon as not
prediction is sought. Artificial immune–tumor ecosystems may be far removed from the
real situation in the living organism, but they could serve as a laboratory to investigate
fundamental principles of dynamics in such systems under well-controlled conditions. As
a complementary approach to biological experiments in vitro, ex vivo, in vivo, or clinical
trials, such sandbox games could be used to generate and refine hypothesis supporting
the design of clinical trials. Scheidegger et al. [33] proposed an artificial immune–tumor
model system covering two essential aspects: ecosystem dynamics between host tissue
and different tumor sub-clones and antigen pattern recognition by a learning (adaptive)
immune system. The proposed model exhibited some interesting aspects: as a response to
radiation treatments, host tissue becomes immune-suppressive whereas the tumor-related
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response is improved by the re-growing tumor cell populations and subsequent necrosis.
This behavior is dependent on the interaction strength (competition) between the host
tissue and the different tumor sub-populations. Regarding these results, an interesting
question is whether there are parameters influencing the specific anti-tumor immune re-
sponse in this model which are related to effects of HT. Therefore, the purpose of this study
is to identify such model parameters and to investigate the potential effect of combining HT
sessions with different RT fractionation schemes in the framework of the proposed artificial
system. In contrast to other mathematical models for immune–tumor systems [1,34], we
consider the adaptive immune system as a trainable (programmable) unit and anti-cancer
treatments as means to train the immune system to battle against cancer.

2. Materials and Methods

The artificial immune–tumor ecosystem proposed by Scheidegger et al. [33] consists of
two major components: a tumor ecosystem, including host tissue and immune cells in the
tumor compartment, and a perceptron [35] for antigen pattern recognition (Figure 1). The
idea of using a perceptron to mimic the immune system’s ability of pattern recognition is
based on the danger model proposed by P. Matzinger [36]. Following this concept, the im-
mune system is only activated when a danger signal and antigens are coincidently present
(adjuvanticity plus antigenicity). The proposed model uses a very simplistic approach for
danger signal generation, which is assumed to be proportional to the amount of necrotic or
immune system-activating apoptotic cells [37–39]. In the following, the model equations
are presented (a detailed explanation of the model is given by Scheidegger et al. [33]). The
dynamic interaction between the different tumor sub-clones Tik and the host tissue H is
given by the following system of ordinary differential equations:

dT11
dt = (kT11 − kmut − keT − r11kIT − kHT H − kTTT − (αT + 2βT Γ) · R) · T11

dTik
dt = (kTik − keT − rikkIT − kHT H − kTTT − (αT + 2βT Γ) · R) · Tik + kmut · qilTlk

dH
dt = (kaH − keH − rHkIH − kbH H − kTHT − (αH + 2βH Γ) · R) · H

(1)

where kTik · Tik is the reproduction rate of the tumor sub-population Tik (the tumor sub-
clones are assumed to form a mutation tree with branches k; kT11 · T11 denotes the repro-
duction rate of the population i = 1 and k = 1, for the host tissue, the corresponding rate is
kaH · H); keT · Tik (and keH · H for host tissue) represents the rate of cell elimination (death
rate) independent from radiation-induced cell killing and immune system-mediated cell
elimination; the immune system-related elimination rate is calculated by rikkIT · Tik with
an interaction coefficient kIT (assumed to be the same for all tumor sub-clones, rik defines
the match with antigen-receptor binding sites and will be explained later; for host tissue,
a different coefficient kIH is used); kmut · qilTlk gives the rate of mutation (qil is a matrix
representing the topology of the population network, see [33]). Competition between the
different tumor sub-populations is included by kTTT · Tik (with the total amount of tumor
cells T) and for host tissue by kTHT · H; kbH · H2 represents the self-inhibition of host tissue
growth. For radiation-induced cell killing, a dynamic linear-quadratic law with a transient
biological dose equivalent Γ [40] is used. The radiation-induced death rate is dependent
on the radiation dose rate R, the radio-sensitivity coefficients αH and βH for host and αT
and βT for tumor cells (in this study assumed to be the same for all tumor sub-clones). The
transient biological dose equivalent Γ is rising with the dose rate R and decaying with a
repair constant γ:

dΓT,H,I

dt
= R − γT,H,I ΓT,H,I (2)
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Figure 1. Structure of the tumor–immune system model and mutation tree/tumor sub-clones with

associated antigen pattern vectors
⇀
P ik. Vector components may represent epitopes on a specific

complex protein or may be distributed over different proteins. According to the presence antigen
vector components, an antigen signal Xn together with the danger signal D generate a perceptron
response Y which induces the growth and immigration of effector cells (In).

The indices are indicating that—depending on the cellular repair capability–different
repair rate constants γ have to be applied for tumor cells, host tissue, and immune cells
(effector cells, the exchange of these cells in the tumor compartment leads to a certain
“repair” effect which depends on the immigration speed of these cells).

The different cell death processes will lead to apoptotic and necrotic cells. Apoptotic
cell death seems not to be equally considered as a danger signal compared to necrotic
cell death [41], where the release of intracellular Heat Shock Proteins (HSP’s) may be
involved [28]. Apoptosis may generate danger signals [42–44] but this usually happens in
particular situations and they can be pro- or anti-inflammatory [45,46]. In the presented
model, we distinguish only between immune-stimulating and non-stimulating cell elimi-
nation processes. As immune-stimulating cell death processes, inflammatory processes,
necrotic cells, non-cleared apoptotic cells which undergo secondary necrosis, or immuno-
genic apoptosis can be seen as immune-stimulating processes [47] and will contribute
to the danger signal. The calculation of this signal is based on the amount of these cells
which are “transformed” damaged pre-immune-stimulatory tumor cells Np,ik and damaged
pre-immune-stimulatory host tissue cells Np,H. Only host tissue cells are considered to be
able to undergo a non-immune-stimulatory elimination pathway (e.g., apoptotic cell death
processes that are characterized by dying cells with still intact membrane integrity and that
do not generate any danger signal) by the rate kapNp,H :

dNp,11
dt = (keT + r11kIT + (αT + 2βT Γ) · R) · T11 − kpnNp,11

dNp,ik
dt = (keT + rikkIT + (αT + 2βT Γ) · R) · Tik − kpnNp,ik

dNp,H
dt = (keH + rHkIH + (αH + 2βH Γ) · R) · H − (kpn + kap) · Np,H

(3)

According Equations (1) and (3), only the elimination processes related to radiation,
immune system-mediated response, and other cell death described by the death rate
parameters keT and keH are considered to produce dying cells, which subsequently are
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transformed to immune-stimulatory necrotic or apoptotic cells at the rate kpnNn,ik and
kpnNn,H . These cells are calculated by:

dN11
dt = kpnNp,11 − knN11

dNik
dt = kpnNp,ik − knNik

dNH
dt = kpnNp,H − knNH

(4)

In summary—and in contrast to the model presented by Scheidegger et al. [33]—the
danger signal generation includes a two-step process with lethally damaged cells which
subsequently transforms to “immune-system-activating” cells as described above. For
calculating the danger signal, a sigmoidal relationship between the signal strength and the
amount of dying cells is assumed:

D =

[
∑
i,k

Nik + NH

]2

L2
act +

[
∑
i,k

Nik + NH

]2 (5)

Lact governs the steepness of this sigmoidal relation between the amount of immune-
stimulatory necrotic or apoptotic cells and the D (activation response).

The task of the adaptive immune system in principle is the detection of antigen
patterns and a response generation based on the presence of the danger signal D. To mimic
this process, Scheidegger et al. [33] proposed a perceptron as a structure which enables the
immune system’s adaptability and ability to learn, along with molecular danger signals
and antigen-antibody (or antigen-receptor) interactions. For this, an antigen pattern vector
⇀
X = Xi can be defined. Every cell of a specific population (tumor sub-clones and host
tissue) bears a corresponding pattern, which is defined by the elements of the antigen
pattern vector. The presence of a component of the pattern vector (molecular signal)
is considered to be dependent on the number of cells bearing this specific component.
According to the pattern used in this study (Figure 1), the antigen signal strength of the
first component for example is given by:

X1 =

(
T̃11 + T̃12 + T̃13 + T̃14

)2

(Xact)
2 +

(
T̃11 + T̃12 + T̃13 + T̃14

)2 (6)

with T̃ik = Tik + ηNp,ik + χNik: pre-immune-stimulatory and immune-stimulatory necrotic
or apoptotic cells are considered to contribute to the presence of antigens, but with the
weighting factors η and χ. Similar to the sigmoidal relation in Equation (5), Xact influences
the activation response. Depending on the presence of a specific antigen signal, the
perceptron is used to adapt corresponding antigen weights wi for generating the perceptron
response by comparing the actual danger signal strength D with the perceptron response Y:

dwi
dt

= a · (D − Y) · Xi (7)

with the perceptron response Y = Σξ/(Yξ
act + Σξ) and Σ =

9
∑

i=1
wiXi. Even here, the

perceptron response is modelled by a sigmoidal function, whose shape can be adapted by
the powers ξ and the activation response parameter Yact.
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The perceptron response Y directly governs the production effector cells by the pro-
duction rate kIYXn. The presented model does not distinguish between the different
immune-response pathways and is based on a simplistic elimination process, where the
receptor binding of an effector cell of the population In with a tumor cell bearing the
corresponding antigen will contribute to the tumor cell elimination. The match of antigen

pattern with the effector cell population vector In =
⇀
I is evaluated by the dot product be-

tween
⇀
I and an antigen pattern vector

⇀
P with components = 1 for bearing a specific antigen

corresponding to the antigen pattern vector component Xn and 0 otherwise: rik =
⇀
I •

⇀
P ik.

Finally, the elimination of effector cells is considered by the elimination rate constant keI and
the radiation-induced elimination by a TBDE-based LQ model with the radio-sensitivity
coefficients αI and β I . At this point, it is important to keep in mind that only the immune
cells in the tumor compartment are irradiated and that compared to the stem cells in the
red bone marrow, the radio-sensitivity of these effector cells may be lower. The very sim-
plistic concept used here may be more suitable for describing the T-cell–mediated response.
Summing up these rates, the temporal change of the antigen or immune cell population
can be calculated by:

dIn

dt
= kIYXn − (keI + (αI + 2β I ΓI) · R) · In − kIT ·

(
∑
i,k

rikTik

)
n

(8)

The selection of parameter values (Tables 1–3) used in this study is representing a
scenario where the radiation sensitivity of irradiated immune cells or antibodies in the
tumor compartment are assumed to be less than the sensitivity of tumor cells but more
than the host tissue. The repair parameter γI in the kinetic model for ΓI (TBDE for effector
cells, Equation (2)) is not only determined by the intrinsic repair of cells (if there is repair)
but by the replacement of effector cells in the irradiated compartment. Therefore, the value
for γI should be above the one of keI . For the radio-sensitivity of tumor cells, a value close
to colon cancer lines is used [48,49]. It is important to note here that the alpha and beta
values cannot be directly compared with the standard LQ model since the kinetic model
for the TBDE will reduce cell killing by repair. The effective alpha and beta values are
therefore lower in this model (with γT = 3d−1: αT,e f f = 0.128 Gy−1 and βT,e f f = 0.020 Gy−1),
representing more radio-resistant tumor cells such as, e.g., cervix carcinoma cells.

Table 1. Model parameters for ecosystem interactions: parameters used for the investigated scenario;
parameters considered as susceptible for hyperthermia are indicated by an asterisk. Parameters are
normalized to 109 cells.

Parameter/Unit Description Default Value

kT11 = kTik/d−1 tumor growth rate constant 3 × 46 × 10−2

kmut/d−1 mutation rate constant 10−3

keT/d−1 tumor cell elimination rate constant 4 × 10−3

kTT/d−1 tumor cell growth inhibition 10−4

kIT/d−1 immunogenic tumor cell elimination 1
kHT/d−1 host-tumor cells interaction 10−5

kTH/d−1 tumor-host cells interaction 2 × 2 × 10−4

kaH/d−1 host cell growth 3 × 10−2

kbH/d−1 host cell growth inhibition 1 × 2 × 10−4

keH/d−1 host cell elimination 10−5

kpn/d−1 necrotic transformation rate constant 0 × 5
kn/d−1 necrotic cell elimination 5
kap/d−1 apoptosis rate constant 2
kIH/d−1 immunogenic host cell elimination 1
kI/d−1 immune cell production and migration * 10
keI/d−1 immune cell elimination 1
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Table 2. Model parameters for pattern-recognition: parameters used for the investigated scenario;
parameters considered as susceptible for hyperthermia are indicated by an asterisk.

Parameter/Unit Description Default Value

Yact danger signal activation level 3
ξ power of perceptron response function 9
Xact pattern recognition level * 2
η pattern presence weight for pre-necrotic cells 0.5
χ pattern presence weight for necrotic cells 0.2
Lact danger signal param. (Equation (7)) * 3
a/1 × d−1 perceptron learning rate 5

Table 3. Model parameters for radiobiological model: parameters used for the investigated scenario;
parameters considered as susceptible for hyperthermia are indicated by an asterisk.

Parameter/Unit Description Default Value

αT/Gy−1 radiation sensitivity coefficient tumor cells * 0.28
βT/Gy−2 radiation sensitivity coefficient tumor cells * 0.05
αH/Gy−1 radiation sensitivity coefficient host tissue 0.05
βH/Gy−2 radiation sensitivity coefficient host tissue 0.01
αI/Gy−1 radiation sensitivity coefficient immune cells (effector cells) 0.1
β I/Gy−2 radiation sensitivity coefficient immune cells (effector cells) 0.01
γT/d−1 radiobiol. repair constant for tumor cells 3
γH/d−1 radiobiol. repair constant for host tissue 10
γI/d−1 radiobiol. repair constant for immune cells 2
R/Gy/min radiation dose rate 0.14

The tumor and host tissue growth parameters have been selected based on the follow-
ing criteria: the tumor is considered as a fast-growing tumor (doubling time of 20 days for
all tumor sub-populations; kTik = 3.46 · 10−2d−1), whereas the host tissue is assumed to
repopulate slightly slower. The equilibrium level Heq for host tissue (homeostasis) is deter-
mined by the values of kaH and keH to 250 (2.50 × 1011 cells). Assuming an average volume
of 2 · 103 µm3 per cell, the initial compartmental volume is 500 cm3. The equilibrium
levels for host (Heq) and tumor (Teq) cell population can be calculated by the equilibrium
conditions from Equation (1):

Teq =
kTik − keT

kTT
and Heq =

kaH − keH
kbH

(9)

The equilibrium level for the tumor cell population without immunogenic elimination
is set to 306 (3.06 × 1011 cells). This corresponds to a scenario where the tumor has less
growth limitation than the host tissue.

As stated in the introduction, many processes may contribute to the effect of HT.
Biophysical models may be used for the description of temperature-dependent effects such
as inhibition of repair proteins or perfusion changes. Even non-thermal effects could be
considered. It is important to clarify here that this study does not focus on the detailed
mode of action of HT. The proposed model describes the tumor–host tissue evolution
over about 5 years and focusses on large time scales. Therefore, a multi-scale approach
including HT-effects in an implicit manner is used. The parameters in the following
Sections 2.1 and 2.2 are considered to be susceptible for hyperthermia.

2.1. Cellular Radiobiological Parameters

Assuming that tumor cells are radio-sensitized by heat-induced impair of the repair
system [50–52], the radio-sensitivity parameters αT and βT are modified according to the
biophysical model proposed by van Leeuwen et al. [53]. The temperature during HT
treatment (duration 60 min per session) was fixed to 42 ◦C and the time gap was assumed
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to be the same for all HT-RT treatments (30 min). Calculating the enhancement factor for
the radio-sensitivity parameters for SiHa and HeLa cells using this model gives for both
cell lines a similar value: αT(42◦C) ≈ 1.96 · αT(37◦C) and βT(42◦C) ≈ 0.34 · βT(37◦C).
These are the values used in this study to mimic the effect of HT in combination with RT. In
the dynamic LQ-model, an additional parameter for repair kinetics, γT may be influenced
by HT. In contrast to the well-established LQ formula, repair kinetics is separated from αT
and βT ; these coefficients can be considered to describe a baseline radio-sensitivity. Since
the important aspect in the immune–tumor ecosystem model is the amount of radiation-
induced necrotic cells, there is no principal difference in the effect when modifying only
radio-sensitivity by αT and βT instead of γT . Tumor tissue is assumed to have slow repair;
therefore, this value was set to 3 d−1 for RT only (incomplete repair between the RT
fraction; 10 d−1 corresponds to more or less complete repair between the RT fractions).
Hyperthermia was assumed to reduce repair speed (repair protein inhibition) specifically
for tumor cells. Therefore, we tested the sensitivity of the model to changes of γT . The
effect of these variations is small and does not change the dynamics in the system. To keep
the model simple, the full effect of HT was only considered by the given factors for αT
and βT .

2.2. Parameters Influencing the Tumour–Immune System Interaction

Besides the radio-sensitivity parameters describing the cellular response to HT-RT
(indirect immune activation via production of necrotic or immune-stimulatory apoptotic
cells), thermal-induced modifications of immune system response are related to processes
on cellular as well as tissue or systemic level. Thermally induced changes in perfusion
and vascular permeability may enhance the accessibility of immune cells (not only effector
cells) to the tumor compartment. To model the perfusion enhancement, the data from
Song et al. [11,54] are used for a simple model: the perfusion enhancement factor PEF
is calculated by a first order kinetic model: dθ/dt = kper f 1 − kper f 2 · θ with the condition
kper f 1/kper f 2 = 1 and PEF = 1 + θ. This leads to a perfusion enhancement of a factor 2
which is reported by Song [11] for tumor tissue heated up to 42 ◦C. To achieve the temporal
course of perfusion changes observed by Song et al. [54], the values for kper f 1 and kper f 2

are set to 200 d−1. According to the data from Song [54], modification of perfusion can be
considered as a fast process, where during heating, perfusion increases to a factor 2 within
30–40 min and decreases within 30 min after heating to the baseline level.

In contrast to this fast process, a second slower process was included in the model
to describe some “long-term” effects of HT. This model has the same structure but the
rate parameters are set to lower values: dφ/dt = kims1 − kims2 · φ. The values for these
immune stimulating parameters (kims1 = 7d−1 and kims2 = 7d−1) are selected to mimic
the experimental data for MHC class I antigen presentation after hyperthermia from Ito
et al. [27], where rat T-9 glioma cells were heated up to 43 ◦C for one hour. According the
data from Ito et al. [27], the enhancement of antigen expression starts 24 h after heating,
reaches a maximum (two-fold increase) at 48 h after heating, and then decays to the baseline
expression level cells at 72 h. To simulate this scenario, one day after a hyperthermia
treatment the parameter kims1 was “switched on” for 24 h. The immune stimulation factor
is defined by: ISF = 1 + φ.

Regarding the effect of perfusion, effector cells are considered to have a better acces-
sibility to the tumor compartment. Since kI does not only describe the production rate
of effector cells but includes migration speed to the irradiated compartment as well, this
parameter is modified for HT by the perfusion enhancement factor: kI,HT = PEF · kI .

The antigen pattern detectability (parameter Xact) may be influenced by HT via in
increased antigen presentation which is related to an enhanced recognition by the immune
cells (macrophages, APCs). By decreasing the value for Xact, the signal “antigen present”
will increase stronger (steeper slope) at small numbers of tumor cells bearing the corre-
sponding antigen. In this model, the shift of Xact is considered to be related with the slow
process: Xact,HT = Xact/ISF.
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The danger signal parameter Lact can be used to describe HT-induced modifications
of the danger signal generation. Regarding Equation (5), the danger signal in the proposed
model is assumed to be dependent on the amount of immune-stimulatory necrotic or
apoptotic cells. The amplification of this danger signal for example by excess HSP release
is considered by varying parameter values of Lact. In analogy to Xact, this HT-related
modification is assumed to be related to the slow process (more HSP production, lowering
of Lact shifts the response curve to the left: Lact,HT = Lact/ISF). For comparison, scenarios
for both parameters have been studied for the fast (directly perfusion-related) process
(Xact,HT = Xact/PEF; Lact,HT = Lact/PEF) as well.

2.3. Investigated Scenarios and Fractionation Schemes

In this study, nine antigen pattern components and nine tumor sub-clones according
to Scheidegger et al. [33] were used. The structure of mutation tree is displayed in Figure 1.

Different fractionation schemes and combinations with HT have been evaluated
(Figure 2). The tumor control probability TCP was calculated by the total amount of tumor
cells T: TCP = e−T . The TCP was evaluated at the time point with the lowest value of
T during or after RT or HT-RT application. In the computer simulations, the artificial
immune–tumor ecosystem evolved 560–570 days before irradiation. The total simulation
time was set to 1800 days. For numerical integration, a Runge-Kutta algorithm with a time
increment of dt = 10−3 d was selected.
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3. Results

For the different treatment schemes displayed in Figure 2, the TCP has been calculated.
The parameter values for the selected scenarios are adapted to achieve a baseline TCP of
0.8 without HT. In Table 4, the resulting TCP for the evaluated parameters are summarized.
The highest TCP was achieved by RT1HT2 protocol (0.990) and a scenario where all HT-
susceptible parameters where modified.
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Table 4. TCP values after RT and HT-RT for the different combination of varying parameter values:
kI is assumed to be perfusion-limited only (fast process only); the column “all parameters” shows
the combined effect of all parameter values modified by HT. Protocols according to Figure 2.

Protocol αT,βT αT,βT,kI αT,βT,Xact αT,βT,Lact All

RT1HT0 0.798 2 no HT no HT no HT no HT
RT1HT1 0.933 0.934 0.935 (0.933) 1 0.952 (0.935) 1 0.960
RT1HT2 0.979 0.980 0.980 (0.979) 1 0.988 (0.980) 1 0.990
RT1HT3 0.980 0.980 0.981 (0.981) 1 0.986 (0.980) 1 0.988
RT2HT0 0.801 2 no HT no HT no HT no HT
RT2HT1 0.931 0.932 0.931 (0.931) 1 0.951 (0.931) 1 0.951
RT2HT2 0.979 0.979 0.980 (0.979) 1 0.983 (0.979) 1 0.984
RT2HT3 0.979 0.979 0.980 (0.980) 1 0.981 (0.979) 1 0.982

1 Fast process (perfusion-limited modifications) for Xact and Lact; 2 No HT applied.

The range of TCP values for treatments with HT was 0.931–0.990. In general, the
differences between the corresponding HT protocols for the two RT fractionation schemes
(RT1 and RT2) are less than ∆TCP = 0.01 and clearly smaller than the impact of HT (TCP-rise
of 0.130–0.192). Regarding the slow and fast process according to the HT models for Xact
and Lact in Section 2.2, the perfusion-like process almost does not affect the TCP value while
the slower process slightly improves it when it is applied to the Lact parameter. However,
the main improvement of the treatment outcome produced by hyperthermia is the cell
radio-sensitization effect, i.e., the change in the αT and βT parameters. For this reason, the
HT1-Protocols have the lowest impact due to the smaller number of HT sessions.

In Figure 3, the resulting course of the host and tumor populations are shown. All the
studied scenarios followed the same behavior with two tumor growth phases: the first one
before RT and the second one after RT (tumor recurrence). Hyperthermia does not change
qualitatively this course; however, it delays the second tumor regrowth by enhancing the
radiation-induced cytotoxicity and the immune system response.
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In Figure 4, the evolution of the effector cell populations is presented. Hyperthermia
clearly increases the immune cells production during the first phase of treatment. However,
no antitumor-vaccination effect is observed in any of the cases: This is clearly visible in
the lower diagrams of Figure 4, where the immune cell numbers are plotted with a linear
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scale. In the upper part of Figure 4 (logarithmic plots), the weak responses during host and
tumor regrowth become visible. A fundamental behavior of the system is visible during
host tissue repopulation after treatment: In a first phase (around day 800), the host-related
immune cell population (I2) rises, based on the previously evolved perceptron weights
and the increasing presence of host tissue cells. Due to the lack of a danger signal during
host tissue regrowth, the effector cell production and immigration drop after an initial
rise. This is related to an evolution of perceptron weights (Equation (7)) to negative values.
Comparing the three displayed scenarios, no substantial changes are observed between the
different hyperthermia schemes, so the immune response is similar in all the cases.
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Figure 4. Development of effector immune cells in case of HT-induced modification of all parameters (last column in Table 4):
For the host-related effector cells, only the population I2 (red line) is displayed; the other host-associated populations behave
identically. The scenarios presented here correspond to (a) Case with no HT (RT1HT0); (b) Case RT1HT3; (c) Case RT1HT2;
upper figures with logarithmic axis.

The immune response after RT is only produced during the first 10 days of treatment
(Figure 5). This explains why the hyperthermia treatment HT2, which is the one with more
hyperthermia sessions during those days, results in the highest TCP value. Additionally,
spikes are visible at the position of each RT fraction because of the radiation-mediated
effector cell elimination. On the other hand, rises in the effector cell production are visible
after each hyperthermia session (Figure 5b,c): one just after HT produced by the perfusion
like effects and another one 1–2 days after because of slow processes. In this figure, it is
also observed that the anti-host immune response after RT is augmented by HT.
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Figure 5. Development of effector immune cells during RT and HT-RT (in case of HT-induced modification of all parameters,
according last column in Table 4). The impact of every RT fraction (5 fractions in the first week starting at day 570 and 4 of 5
fractions of the 2nd week starting at day 577) on the effector cells is visible as a spike-shaped drop of the cell number. The
scenarios presented here correspond to (a) Case with no HT (RT1HT0); (b) Case RT1HT3; (c) Case RT1HT2. A dashed line is
plotted each time a HT session is performed.

4. Discussion

As stated in the introduction, the results of this study cannot be applied directly to
clinical treatments since they represent the behavior of an artificial system. Besides the
uncertainty of many of the used parameters, a very simplistic description of the immune
system is used. One of the main shortcomings is the lack of an immunological memory.
In addition, only the local response in the tumor compartment is regarded. The anti-host
immune reaction observed in our simulations may be interpreted as a local inflammatory
process after radiation. In the case of additional compartments containing only non-
irradiated neighboring host tissue, the training of the perceptron may result in different
weights for host tissue and a subsequent modification of the anti-host response. Regarding
this aspect, a multi-compartmental model would be closer to the real patient.

In addition, the inclusion of HT in the model follows simplistic concepts leading to the
question of whether they are appropriate. In particular, thermo-tolerance is not considered.
Therefore, the conclusions may not be appropriate for shorter intervals of HT sessions
at higher temperatures (above 41–42 ◦C). Interestingly, the influence of variations in the
HT sub-models does not lead to large differences in the outcome. This can be seen as an
indication that—at least for larger time scales—the dynamic interplay between the adaptive
immune system (perceptron training) and tumor-host ecosystem may be more important,
independently of the details of the different sub-models.

The analysis of infiltrating immune cells in biopsy material can be compared to the
time course of the effector cell populations in the model. The problems of comparing
the model with such real-world data derived by biopsy material of cancer patients are
manifold. The analysis of tumor samples by Holl et al. [57] revealed a percentage of overall
lymphocytes of 2–39% of totally living cells. Not all of these cells can be considered as
effector cells in the sense of our model. Therefore, it can be expected that the number of
effector cells acting against the tumor should be clearly below (in the presented simulations,
a percentage of 0.1–0.5% can be observed). Real world data give an indication for an upper
limit (the simulation results are clearly below this limit) but also exhibit a large variation of
patient—and tumor—specific responses.

Besides the percentage of effector cells in the peak of the immune response, a com-
parison of the production/invasion and elimination speed with real-world data would be
interesting. According the work of Krosl et al. [58], the immigration (infiltration) of cells
of the innate immune system seems to be very fast: neutrophils peak around 5 min and
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mast cells exhibit a pronounced rise during the first 25 min after Photodynamic Therapy
(PDT) in CH3/HeN mice with implanted squamous cell carcinoma. No lymphocytes have
been observed during the first 8 h after PDT. In our simulations, the effector cell number
rise after the first RT fractions with a delay of 1 h at a high rate during 2–3 h followed by
a slower increase over days. Regarding the point that these effector cells are part of the
adaptive immune system, a slower process compared to the innate immune response can
be expected, although the artificial immune system in our simulations was pre-exposed to
the tumor antigens prior to the first RT fraction by necrotic tumor cells.

A stringent comparison with clinical trials is at the moment not possible and would
require a sufficient number of patients in the different HT-RT treatment schemes (HTxRTy).
A coarse indication may be obtained by a comparison with a clinical trial including patients
with UICC stage I-IV anal cancer who received chemo-radiotherapy [55]: 50 out of the
112 patients received additional hyperthermia treatments. After 5 years follow-up, the
overall response was significantly increased in the hyperthermia group (95.8 vs. 74.5%).
The local recurrence-free after 5 years follow-up was 97.7% (HT) vs. 78.7% (no HT). These
values are in agreement with the presented results. It is important to note here that only
the case without HT (RT only) was adjusted to a TCP of 0.8. The fact that a comparable
impact of HT, as observed by Ott et al. [55], was reached is based on the HT models used
in the simulations.

During this study, a large number of simulations with varying conditions and param-
eter values have been executed (not shown). Over a large range of different parameter
values, similar behavior of the system was observed. In this light, the semantic approach
used for modelling in this study leads to the observation of some fundamental dynamic
patterns which may allow general conclusions concerning the basic dynamics in such
systems. However, the following conclusions are more or less restricted to the investigated
scenarios and the proposed artificial immune–tumor ecosystem.

5. Conclusions

For the first time, a simulation for investigating the effect of a full HT-RT treatment
on an artificial adaptive immune–tumor ecosystem is presented. In the investigated sce-
narios, RT leads to an anti-tumor as well as an anti-host response during RT. This effect
is—especially for tumor cells—increased by the application of HT prior to selected RT
fractions. The main effect of HT (∆TCP = 0.13–0.18) is based on the adaption of the
radio-sensitivity coefficients indicating a pivotal role of heat-induced, intra-cellular modi-
fications. Perfusion or heat-based effects on the immune system seem to contribute less
(∆TCP = 0.003 − 0.019) in the investigated system. In addition, the influence onto the
TCP between the two RT fractionation schemes is very small (∆TCP = 0.001 − 0.011) and
the RT2-fractionation turned out to be slightly less effective, in contrast to the findings by
Scheidegger and Fellermann [59]. Even for the different HT protocols, the main rise of TCP
is achieved by the early HT sessions. This is the reason why the HT2-protocol (as used for
the HYCAN trial) exhibits a slightly better response. This is based on the fact that at the
beginning of the therapy, more tumor cells are present and the effect of radiation-induced
cell killing and immune activation is therefore stronger. As a possible consequence for
clinical treatments, more HT sessions at the beginning of a HT-RT treatment seems to be
favorable, as long as no thermo-tolerance will be induced.

During RT and HT-RT, a pronounced immune response contributes to tumor cell
elimination by activation of the immune system via the perceptron response (rise of
perceptron weights). As the tumor regrows after treatment, the secondary (late) immune
response remains weak in all simulations and no radiation—or heat—induced anti-tumor
vaccination effect was observed. The perceptron weights for host tissue evolve during the
regrowth phase into negative values. This leads together with the decreased weights for
the different tumor sub-clones to an immune-suppressive effect. This effect is based on
the dynamic interplay between population (re-) growth and the perceptron training. If
the immune system in patient would behave similar, this effect would be added to other
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effects based on the immune-suppressive strategies of tumor cells such as the release of
immune-regulatory cytokines or changes in the microenvironment [60]. In general, the
therapy outcome is strongly influenced by the combination of ecosystem dynamics and
perceptron training. By implementing an immunological memory in the model, it would be
interesting to search for scenarios where HT enhance or induce a memory-based anti-tumor
response (HT-induced anti-tumor vaccination).

As a more general conclusion, a stringent and systematic comparison between the
presented simulation and clinical trials requires trials with sufficient patients receiving
treatments using similar fractionation schemes and with a careful documentation/reporting
of achieved temperature courses during treatments (and time gaps between HT and RT).
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