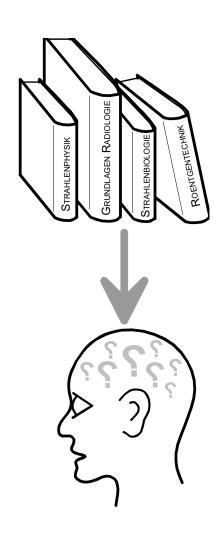
Modelling and Biological Systems

Hyperboost Training Course Model-based Data Analysis for Clinical Applications

Stephan Scheidegger Medical Biophysics Group ZHAW 2024

CONTENT MBDA



Model-based data analysis for clinical application – Modelling and Biological Systems:

Day 1

0920-1100: Modelling and Biological Systems

1320-1400: Using Graphical Model Editors

1400-1450: Using Python for Model Fitting

Day 2

1110-1200: Biokinetic / Biodynamic Modelling

(→ Lab2: Model-based Data Analysis of PET

Images)

Day3

0900-1100: Radiobiological Models

Learning Objectives

Students are able

- To be aware of the different purposes of modelling
- to explain the assumption for compartmental models
- to model compartmental biological systems and explore them by using computer simulations
- to use models for biological data analysis
- To use modelling and computer simulation as in silico lab tools

About Systems, Data & Models

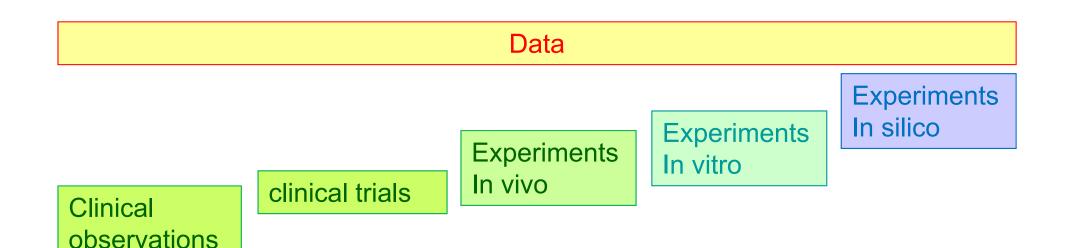
Systems Biophysics – Systems Medicine – a Landscape

Concepts:
Illness, disease
Body as mechanism
Compartments
Life as process
emergence

Theory:
Physiology,
Pathophysiology
Systems theory of

- Cancer
- Immune system
- ...

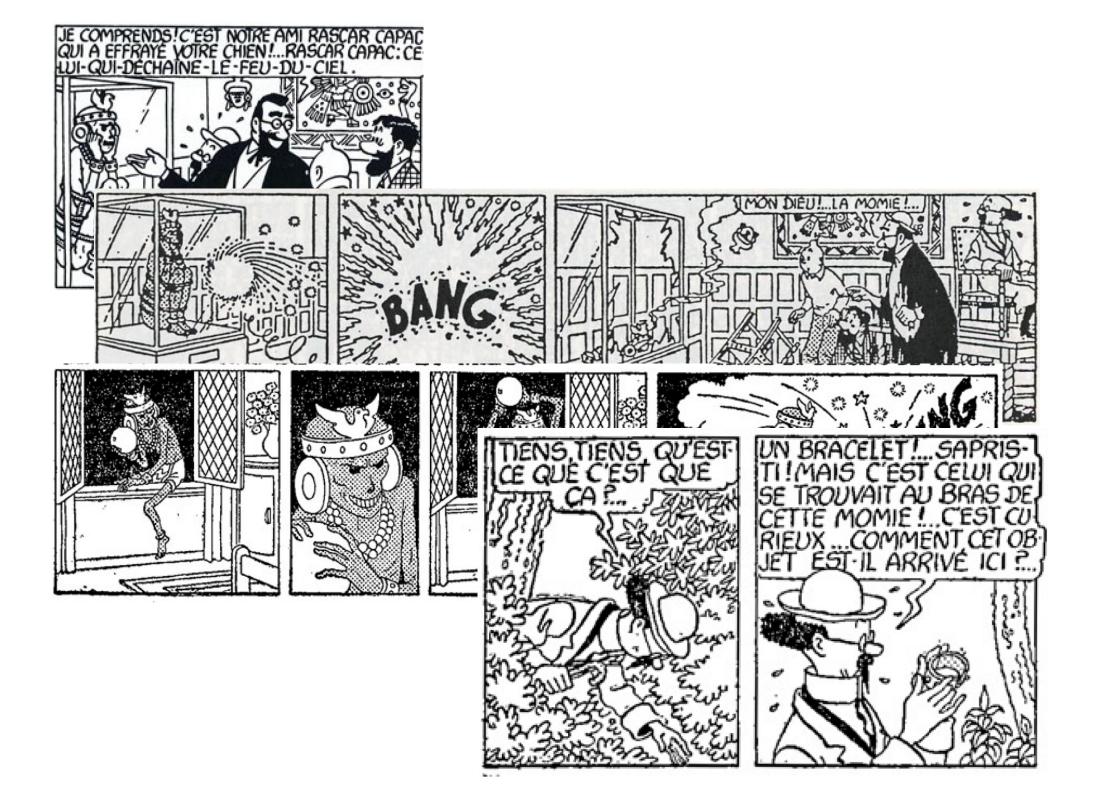
Math. Models:
Events, MC
Statistic mechanical
Compartmental
(neuronal) networks
Spatio-tempral



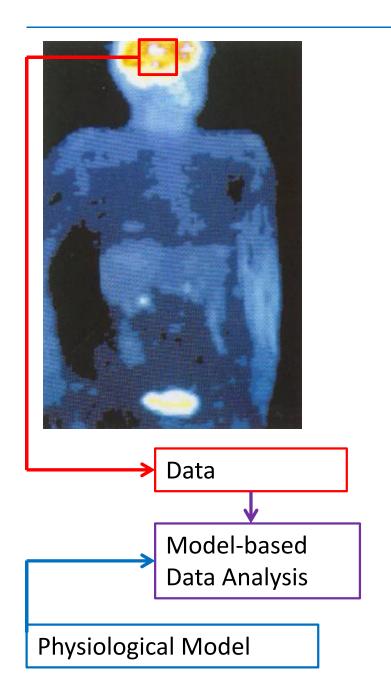
Biomedical Systems?

Systems Science and Medicine...

- Do we have the adequate concepts to understand disease and treatment?
- Usually, clinical trials compare drug with placebo, before and after, but do not tell the story!
- Dynamics of involved processes (life!) are often not in the «field of view»
- How to catch the story ...



CONTENT



Catch the dynamics:

Model-based data analysis may reveal the processes responsible for outcome

- Example 1: Analysis of time-resolved biokinetic data (elimination)
- Example 2: Multi-process repair dynamics

Mechanism vs. process: Biological systems are not only dynamic but have high plasticity! Mechanistic or dynamic view?

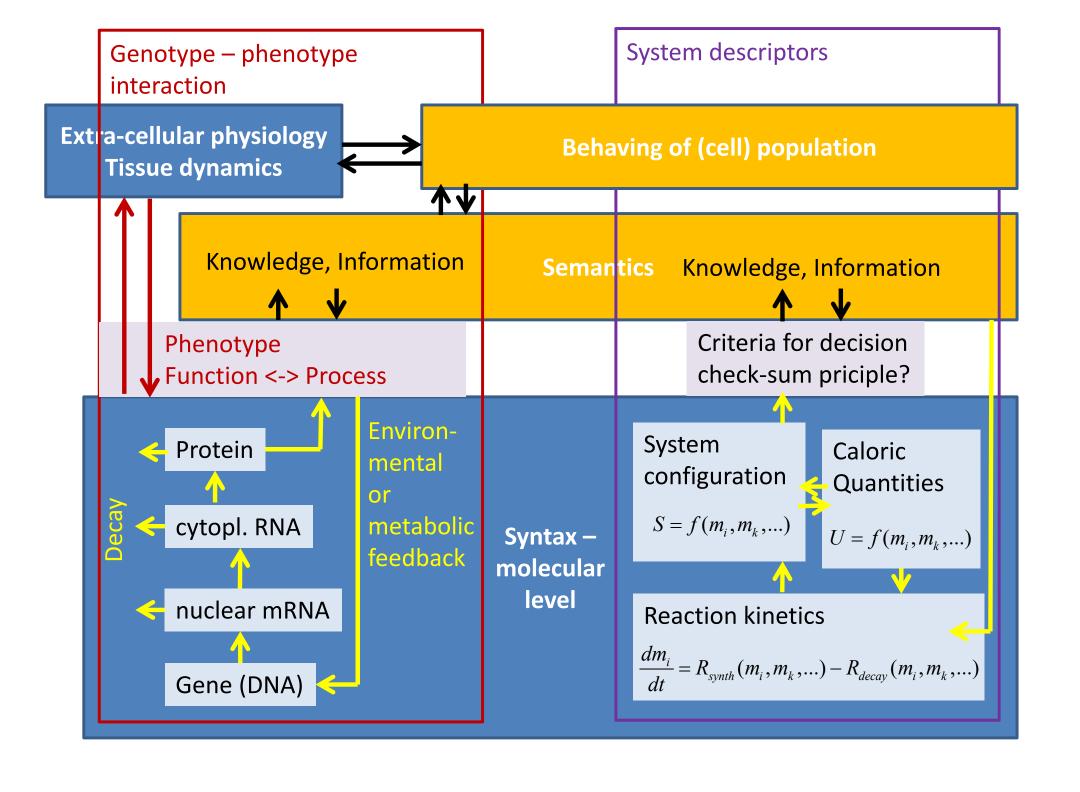
Comparison of outcomes may generate knowledge, but - in case of complex systems - not understanding!

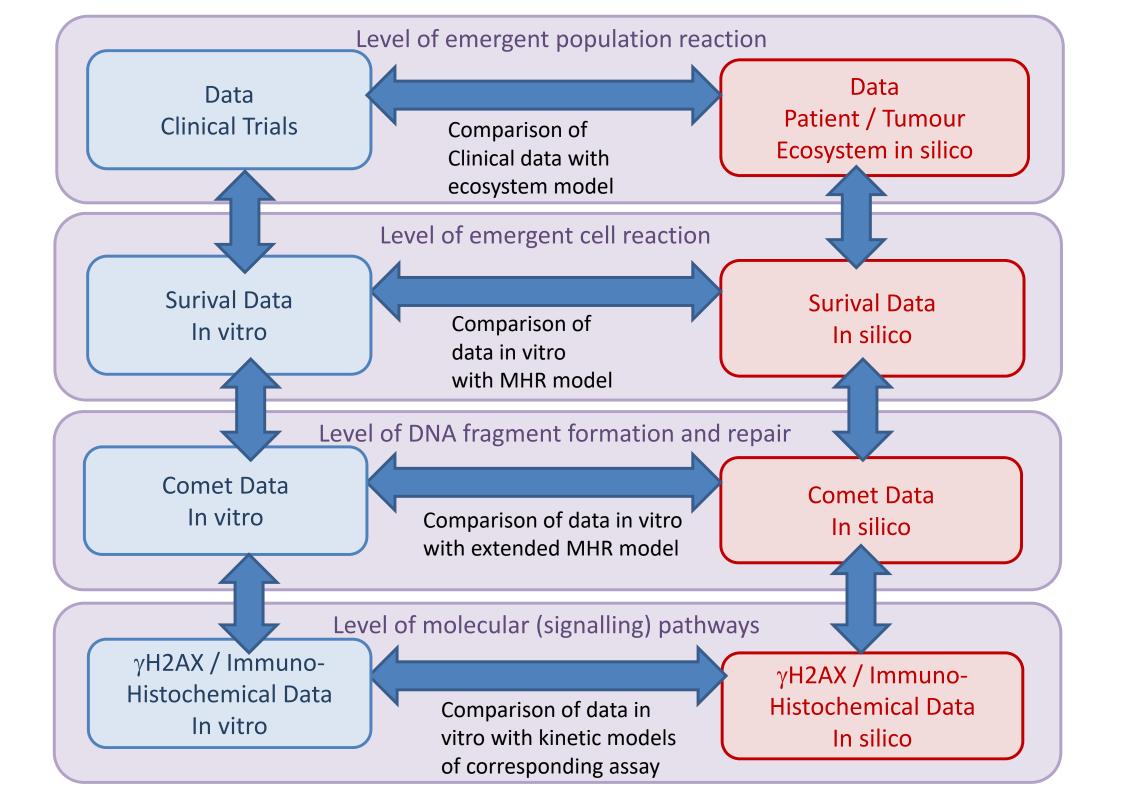
The Scales of Life

This is not a Teddy Bear – this is only a picture!

- Interpretation of colored patches requires semantics
- Semantics in living systems is an emergent phenomenon
- Emergence is a result of dynamics in a complex system!
 - → without dynamics no life!
- Syntax of life is more related to the molecular level

Fig.1. A sketch of a living system with some essential "sub-systems"





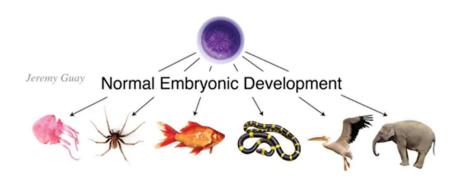
Anatomy and Function

Anatomy is evolved – design follows function.

- Biolgical systems have remarkable structural and functional plasticity and robustness ("anatomical homeostasis", top-down control of collective outcomes
- Bioelectric networks seems to be a way how evolution has expanded computational boundaries of cells into organisms (reprogrammability: hardware vs. software!)
- Hypothesis (formulated by Michael Levin¹): "multiscale autonomy of goal-seeking subunits while bringing the risk of cancer (!) is the key to adaptive function and evolvability"

¹Levin M (2020): Key note lecture, Alife 2020 Conference

Current Paradigm of Anatomy

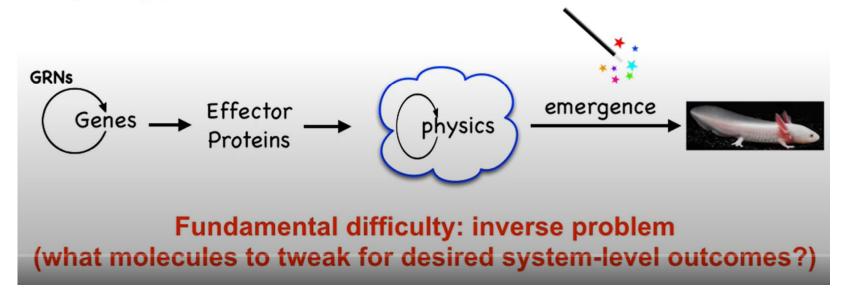


Tissues/organs emerge from

- cell differentiation
- cell proliferation
- cell migration
- apoptosis

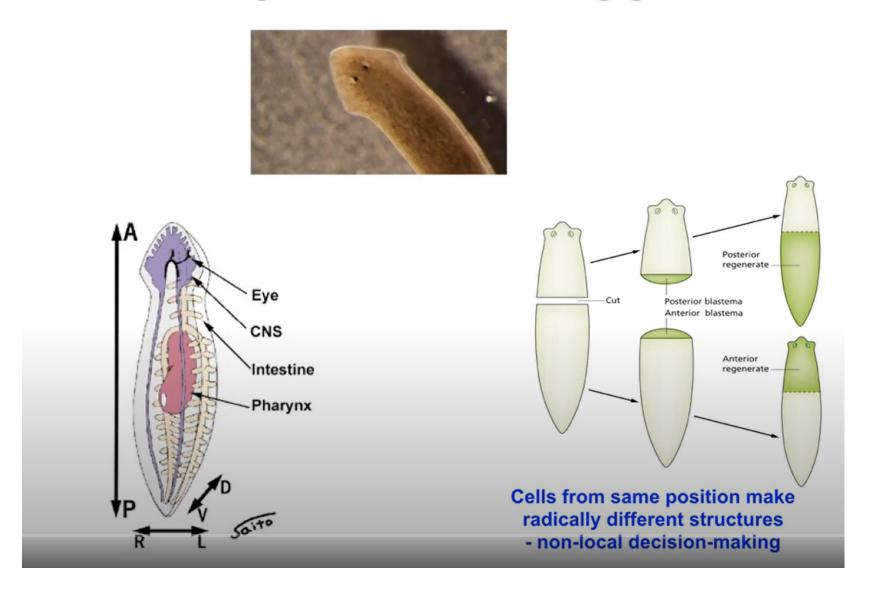
under progressive unrolling of genome

Open Loop system:



¹Levin M (2020): Key note lecture, Alife 2020 Conference

Planarian Regeneration: restoring global order



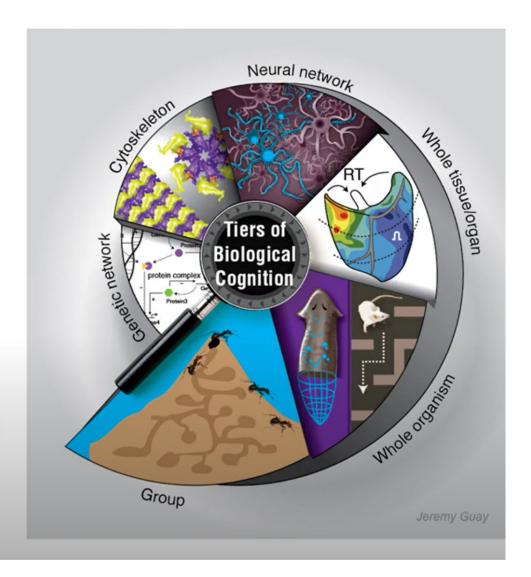
¹Levin M (2020): Key note lecture, Alife 2020 Conference

Closed Loop Pattern Homeostasis Anatomical Error Detection and Control Loop surveillance and adjustment of self-model injury **GRNs Effector** emergence physics Genes-**Proteins** of anatomy Tissues/organs change position, shape, gene expression until the correct shape is re-established, and then they stop! A homeostatic cycle for shape.

¹Levin M (2020): Key note lecture, Alife 2020 Conference

Developmental Biology <--> Basal Cognition <--> Comp Sci

- Complex decision-making at all levels of biology - the parts are unreliable but smart
- Cells and tissues compute during morphogenesis and repair
- Bioelectric networks underlie pattern memories and pattern homeostasis
- Combination of bottom-up emergence AND top-down representation, reprogrammability

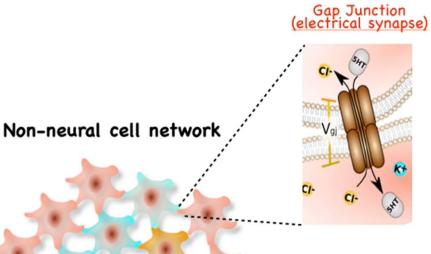


¹Levin M (2020): Key note lecture, Alife 2020 Conference

Manipulating Bioelectric Networks in vivo

Tools we developed

(no applied fields!)



- Dominant negative Connexin protein
- GJC drug blocker
- Cx mutant with altered gating or permeability

Synaptic plasticity

Intrinsic

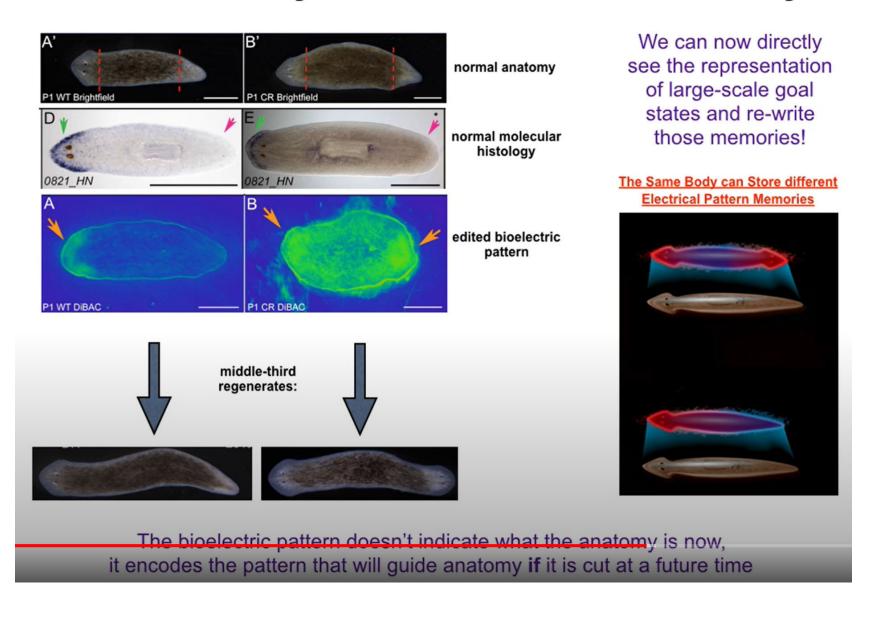
plasticity

- Lon channels (setting V_{mem})
 Dominant ion channel over-expression (depolarizing or hyperpolarizing, light-gated, drug-gated)
 Drug blocker of native channel
 - Drug opener of native channel

. .

¹Levin M (2020): Key note lecture, Alife 2020 Conference

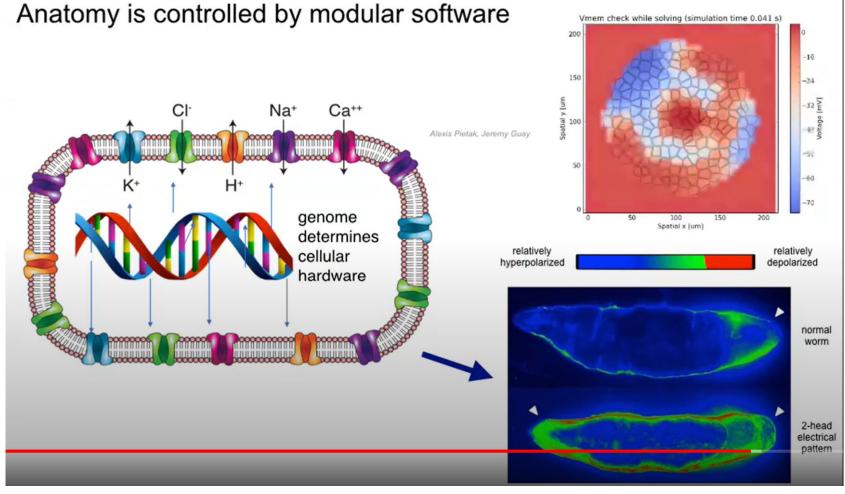
Bioelectrically-Encoded Pattern Memory



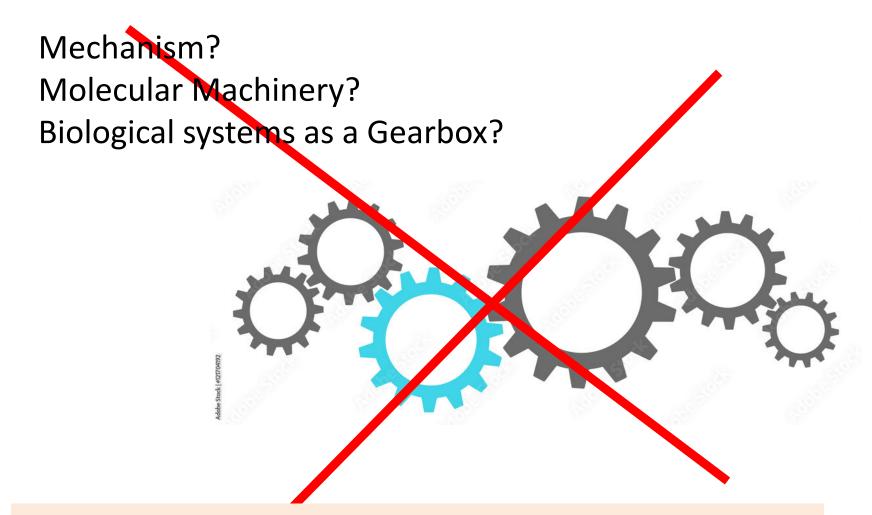
¹Levin M (2020): Key note lecture, Alife 2020 Conference

A Better Metaphor:

DNA encodes a versatile excitable medium with default symmetrybreaking dynamics and memory



¹Levin M (2020): Key note lecture, Alife 2020 Conference



Biological systems are different! Complex dynamics, emergence, plasticity, redundancy!

Advanced Modelling of Cell Differentiation

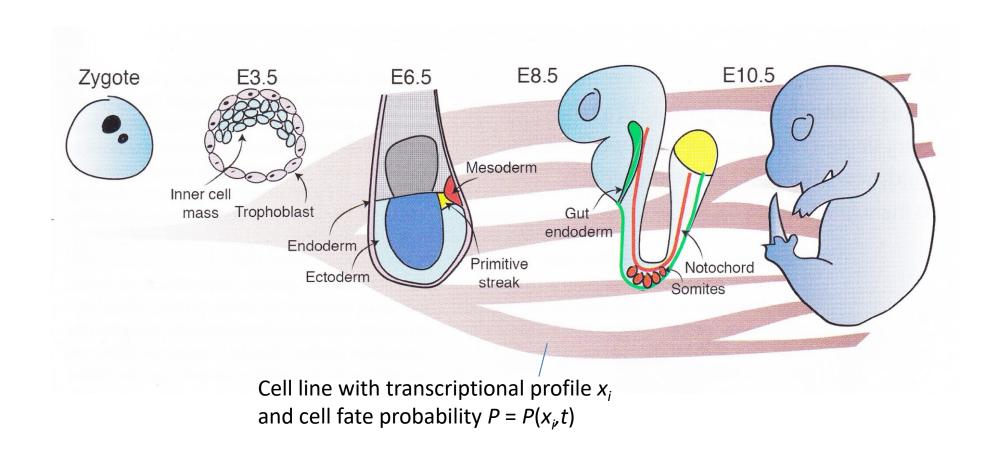
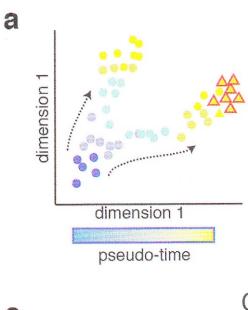
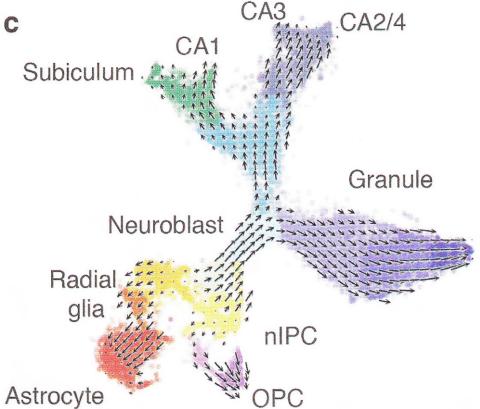


Fig.1. Differentiation pathways and cell fate (Alemany A, https://doi.org/10.1051/epn/2020505)





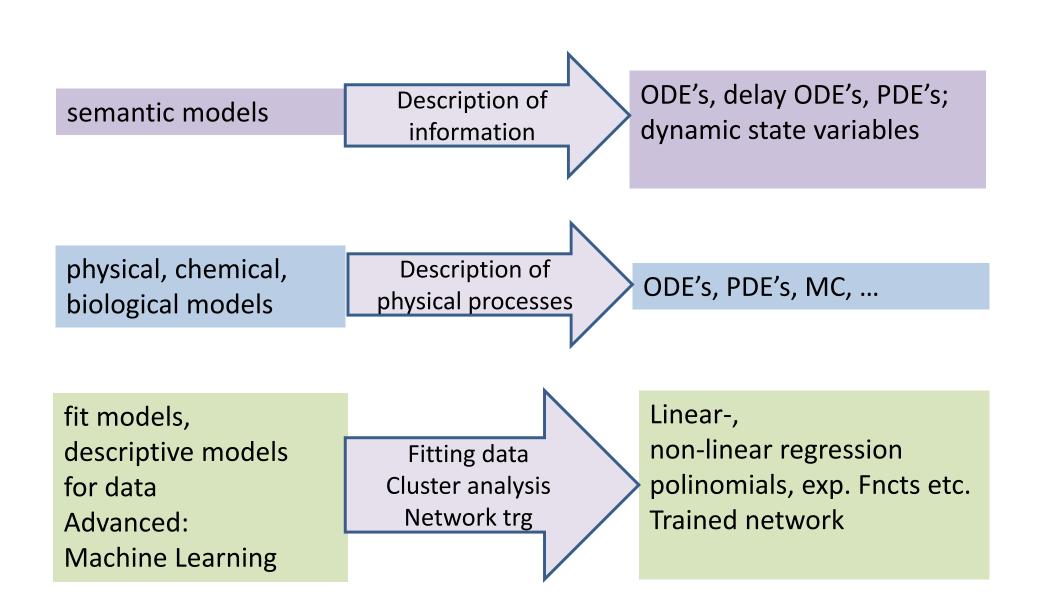
Cell Differentiation

Description of cell fate probability P by directed diffusion (Fokker-Planck Equation); **F** denotes a vector with functions governing the transcription (corresponding to the transcriptome vector)

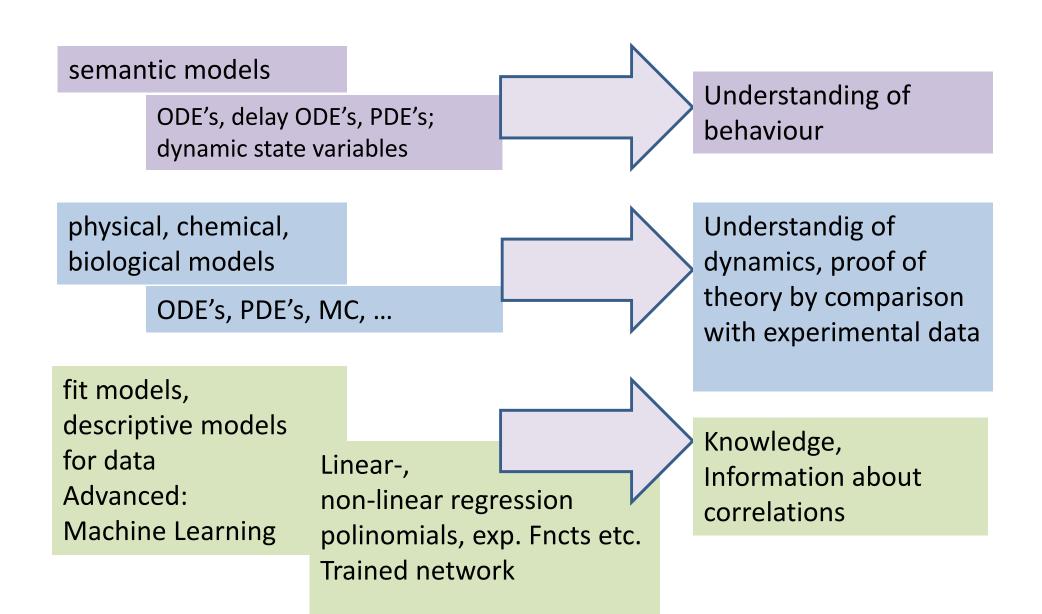
$$\frac{dP}{dt} = \Delta [DP] - \nabla \bullet [\vec{F}P]$$

Fig.1. Differentiation pathways and cell fate (Alemany A, https://doi.org/10.1051/epn/2020505)

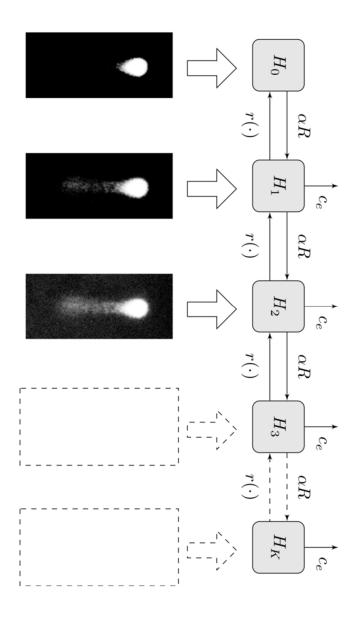
Catching the Real World in Models



What We Can Learn form Models



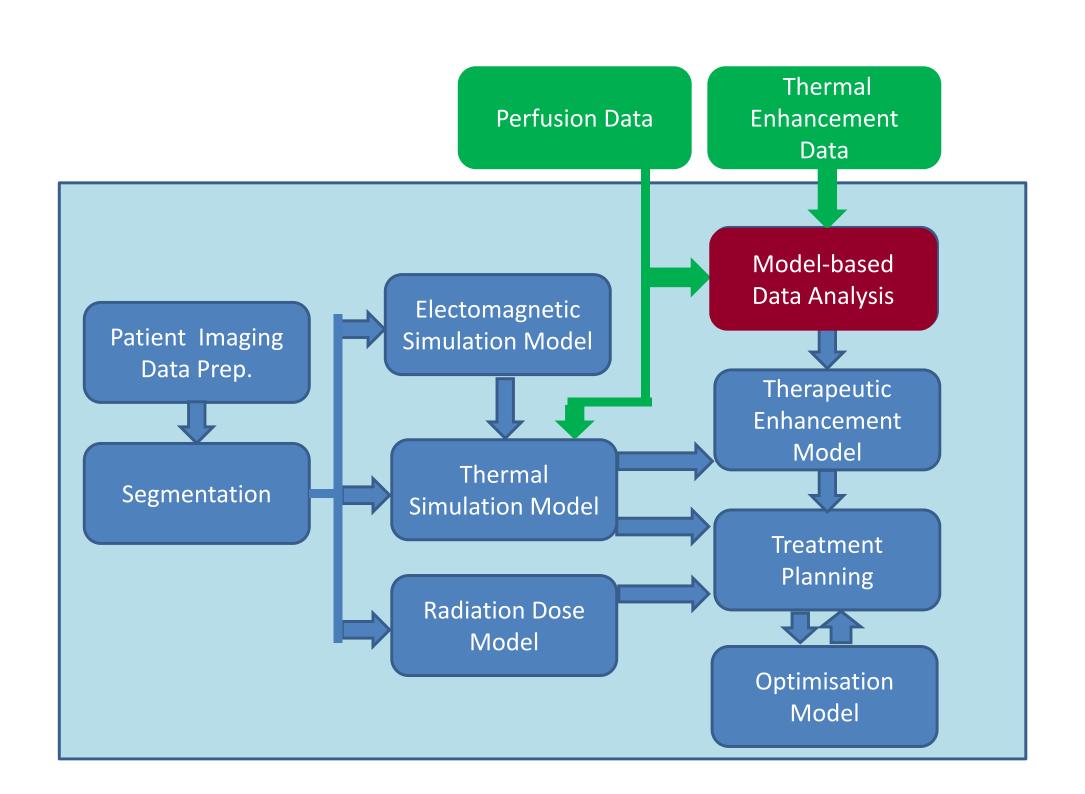
Aims of Modelling



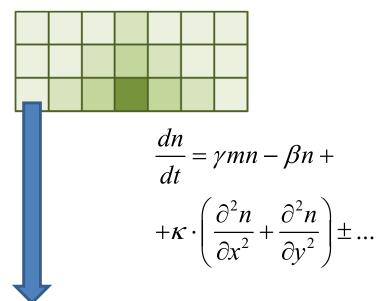
The way of modelling a biological system is dependent on the purpose:

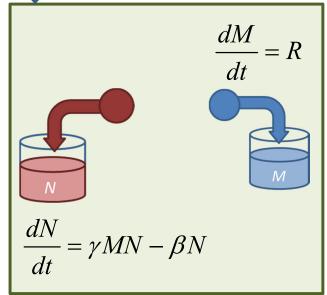
- Models for treatment planning have to be predictive (weather forecast)
- Models for model-based data analysis must be comparable to the data
- Models for investigating dynamics in biological systems must represent the relevant aspects of the system behaviour

Fig.1. Mapping of the Multi-Hit-Repair (MHR) model to Comet assay data (DNA damage)



Modelling Approaches and Techniques

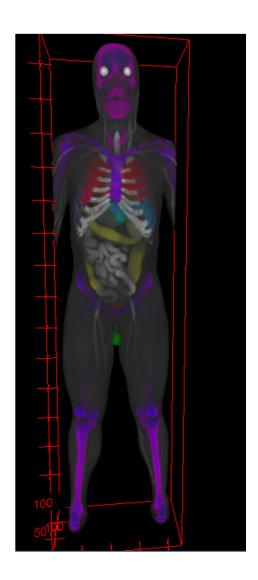




Depending on the purpose, different modelling approaches can be useful:

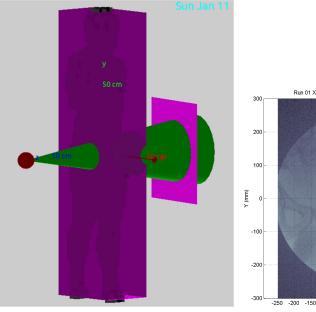
- Compartmental models:
 Mathematical description by ordinary
 differential equations (ODE) or delay
 differential equations (DDE);
 simulation using finite difference
 methods
- Spatio-temporal models:
 Mathematical description by partial differential equations (PDE), simulation using time-domain finite difference (TD-FD) methods or finite elements methods (FEM)

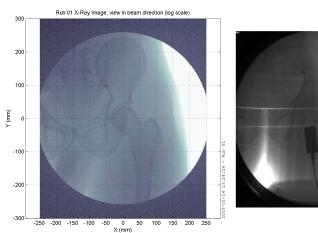
Modelling Approaches and Techniques

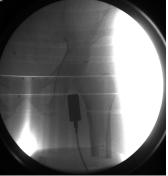


Non-differential equation-based methods:

- Cellular automaton
- Agent-based models
- Monte-Carlo (MC) simulations

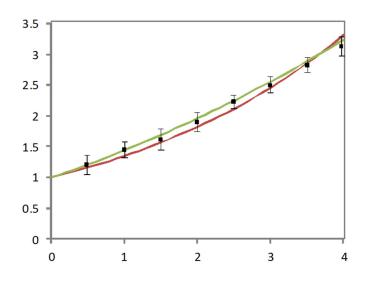






MC Model, calculation and images by Patrik Eschle

Modelling and Computer Simulation



Does a model work correctly?

- Verification: equilibrium levels, initial rates, frequencies, dynamic behavior under controlled conditions
- **Calibration**: use of observed data for fitting
- Validation: use of observed data for comparison with model prediction
- **Certification**: needed e.g. for medical products

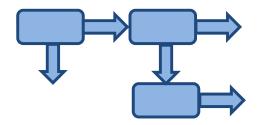
$$\frac{dN}{dt} = \alpha N$$

$$\frac{dN}{dt} = \alpha \sqrt{N}$$

Approaches to
Stock & Flow – and
Compartmental Modelling

Compartmental and ODE-based Models



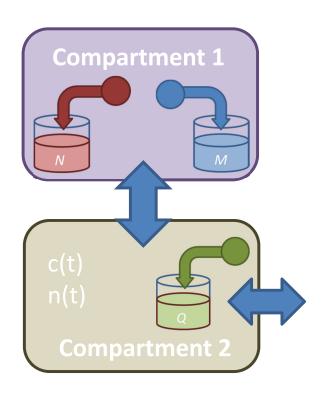


In a first step, we start with simplistic compartmental models to introduce fundamental concepts of modelling.

Compartmental modelling can be applied to:

- Populations and ecosystems
- Epidemiological problems
- Physiological processes
- Drug distribution (biokinetics)
- Therapy optimizations
- ..

Fig.1. Mapping of a living system to a compartmental model



$$N = N(t); M = M(t); Q = Q(t)$$

 $n(t); c(t);...$

$$J_c = -\kappa_c \nabla \varphi; J_n = -\kappa_n \Delta n$$

$$J_{N1} = f(N,...;t); J_{N2} = h(N,...;t)$$

$$\frac{dc}{dt} = J_c = -\kappa_c \Delta c; \quad \frac{dn}{dt} = J_n = -\kappa_n \Delta n$$

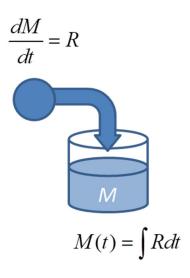
$$\frac{dN}{dt} = J_{N1} - J_{N2}; \quad \frac{dM}{dt} = \sum_{k} J_k$$

Compartments and Stock & Flow - Models

A recipe:

- Topology of the system? Define compartments and / or stocks
- Quantities describing the system?
 Define numbers of cells, densities,
 amount of drugs, concentrations etc.
- These quantities are considered as functions of time: To describe the dynamics, we need the first derivative in time (why?)
- To get the flows, describe the driving forces leading to the (ex)change of the aforementioned quantities.
- Formulate the flow balance

Population Models



Given the population size (number of individuals, organisms) N = N(t), the system can be described mathematically by the first derivative with respect to time t:

$$\frac{dN}{dt} = \dot{N}$$

 The temporal change in the system is equal to the balance of birth – and death rate

$$\frac{dN}{dt} = birthrate - deathrate = \sum_{i} R_{i}$$

Population Models

$$\frac{dN}{dt} = \alpha N$$

$$\int \frac{dN}{N} = \ln|N|$$
$$= \int \alpha dt = \alpha t + const.$$

Example: exponential growth. Even in this case, solution can be found easily by

- Separation
- Integration

$$N(t) = N_0 \cdot e^{\alpha t}$$

$$N(t) = N_0 \cdot e^{\alpha t}$$

$$\frac{N(T_2)}{N_0} = 2 = e^{\alpha T_2} \rightarrow T_2 = \frac{\ln 2}{\alpha}$$

Population Models

$$\frac{dN}{dt} = \alpha \sqrt{N}$$

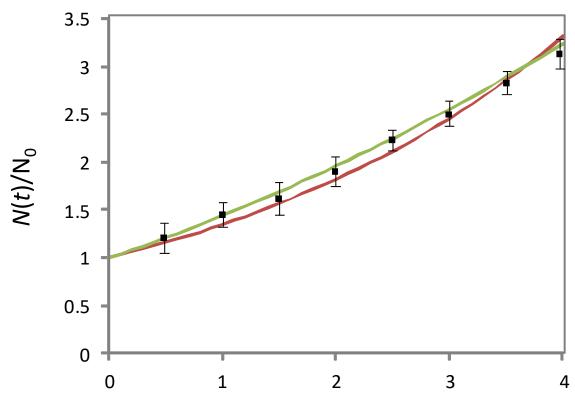
$$\int \frac{dN}{N^{0.5}} = \int N^{-0.5} dt = 2N^{0.5}$$
$$= \int \alpha dt = \alpha t + const.$$

$$N(t) = \left(\frac{1}{2}\alpha t + \sqrt{N_0}\right)^2$$

Exponential growth is only possible as long as nutrients (resources) are unlimited. A model for planar growth (cell cultures etc.) can be found by the following assumptions:

- Nutrient limitation leads to growth inhibition within the populated area
- only at the rim of the populated area, growth is possible (new substrate)
- The circumference is proportional to the square root of the area, therefore the growth rate is proportional to the square root of the population size.

Population Models: Model-based Data Analysis



$$N(t) = N_0 e^{\alpha t}$$

$$\frac{dN}{dt} = \alpha N$$

Data Analysis

Fitting Model

$$N(t) = \left(\frac{1}{2}\alpha t + \sqrt{N_0}\right)^2$$

$$\frac{dN}{dt} = \alpha \sqrt{N}$$

Population Models

$$\frac{dN}{dt} = \alpha N - \beta N^2$$

$$\alpha N_{eq} - \beta N_{eq}^2 = 0$$

$$N_{eq} = \frac{\alpha}{\beta}$$

Many observations of growth in biological systems indicate a logistic growth:

- with an exponential growth
- Inhibition proportional to N²
- Equilibrium level is given by the ratio of growth- and inhibition constants

Population Models

$$\frac{dN}{dt} = \alpha N - \beta N^2$$

$$\int \frac{dN}{\alpha N - \beta N^2} = \int dt$$

Solution can be found by partial fraction separation, expansion / decomposition and integration:

$$N(t) = \frac{\alpha}{-(\beta - \alpha/N_0) \cdot e^{-\alpha t} + \beta}$$

$$0.75 - \frac{a}{\beta = 0.2}$$

$$0.50 - \frac{a}{\beta = 0.1}$$

$$0.25 - \frac{d}{\beta = 0.1}$$

$$0.25 - \frac{d}{\beta = 0.4}$$

$$0.26 - \frac{\alpha}{-(\beta - \alpha/N_0) \cdot e^{-\alpha t} + \beta}$$

$$0.75 - \frac{a}{\beta = 0.1}$$

$$0.75 - \frac{a}{\beta = 0.1}$$

$$0.75 - \frac{\alpha}{\beta = 0.1}$$

Combined Population Models

$$\frac{dc}{dt}$$
 = inflow – outflow

Growth inhibition may be introduced by

$$\frac{dc}{dt} = k_1 \cdot (c_{ref} - c) - k_2 N$$

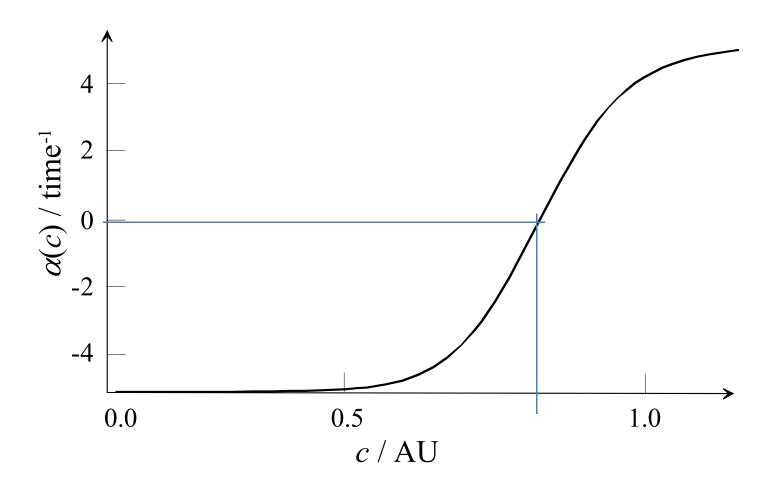
$$\frac{dN}{dt} = \alpha(c) \cdot N$$

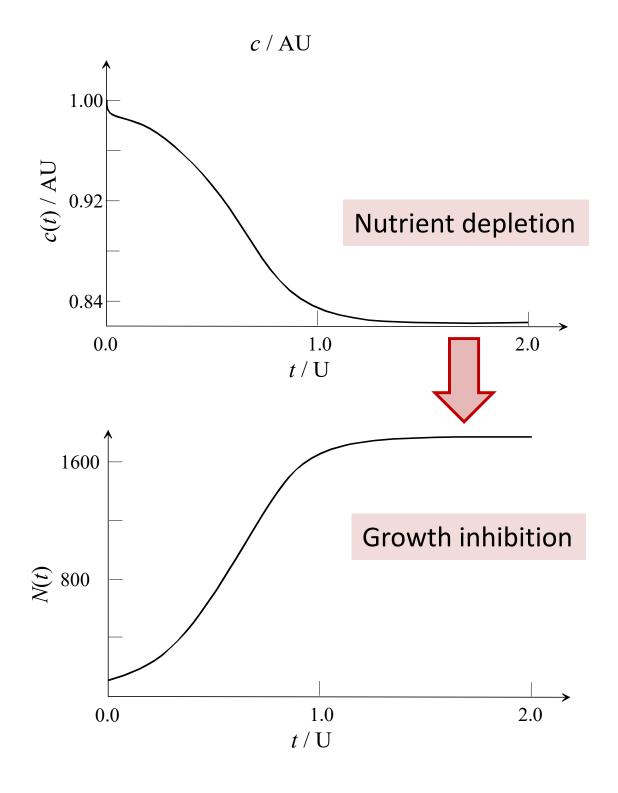
- Modelling of nutrients (concentration c) is similar to our general modelling approach (balance of flows)
- The coupling of the population model and the nutrient model is possible via nutrient-dependent growth constant and population-size dependent consumption rate

$$\alpha(c) = \frac{\lambda_1}{-(\lambda_2 - \lambda_1 / \alpha^*) \cdot e^{-\lambda_1 c} + \lambda_2} - \frac{\lambda_1}{2\lambda_2}$$

Combined Population Models

$$\alpha(c) = \frac{\lambda_1}{-(\lambda_2 - \lambda_1 / \alpha^*) \cdot e^{-\lambda_1 c} + \lambda_2} - \frac{\lambda_1}{2\lambda_2}$$

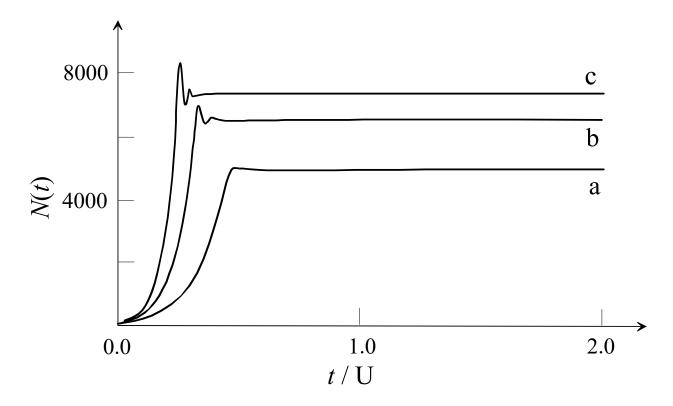




Combined Population Models

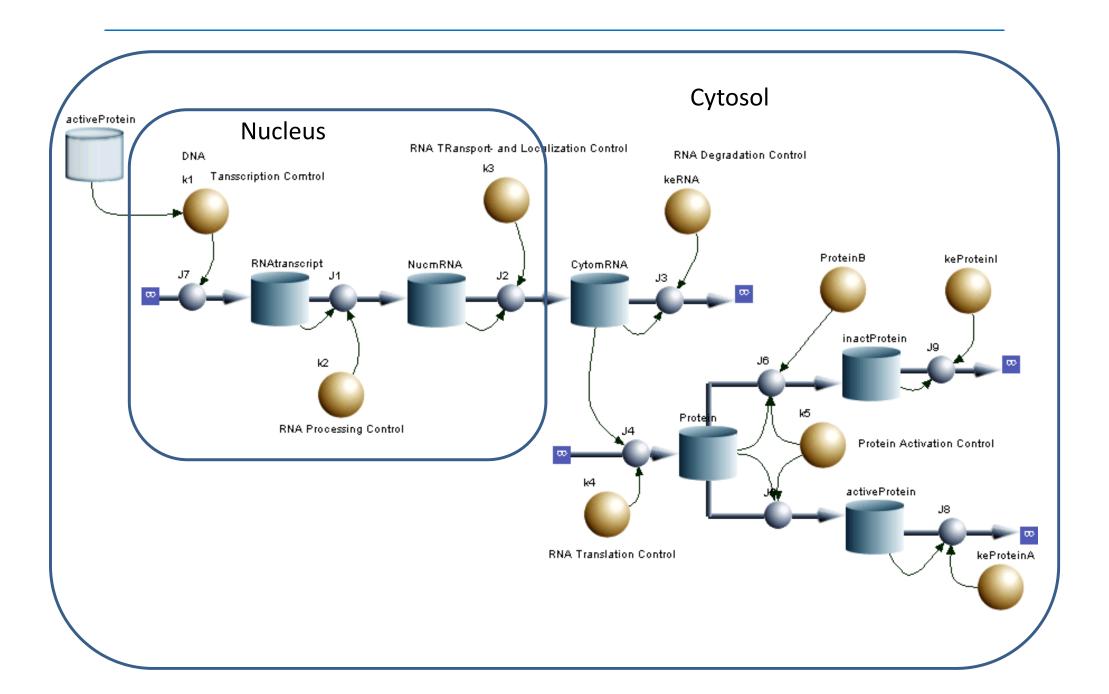
Combined growth – nutrient models can replicate the logistic growth, but depending on the parameter values, the model exhibit more versatile behavior:

Models should be as complex as required!

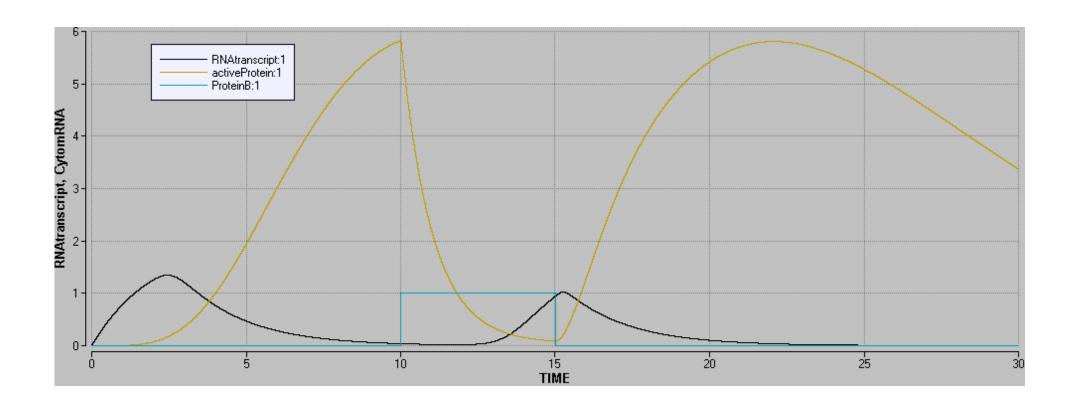


Some Examples ...

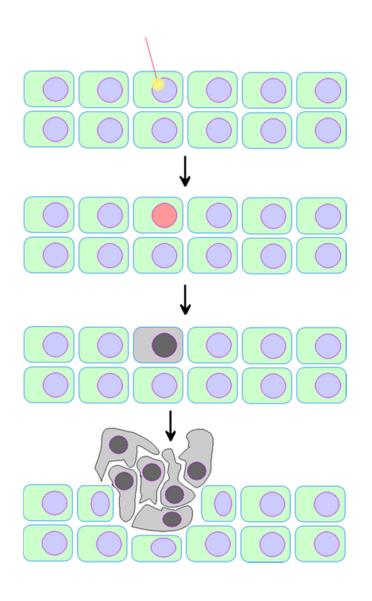
Modelling Transcription and Translation



Modelling Transcription and Translation



Population Models



Medical applications of population models:

- Epidemiology
- Tumour growth and anti-cancer treatment
- Immunology
- Ecosystem dynamics and system medicine

Fig.1. Cancerogenesis in host tissue (green cells)

Tumour Translation / Transformation and Progression

Adenoma model for colo-rectal cancer

N: Host tissue (epithelial cells)

• A: adenoma cells

• C: carcinoma cells

$$\frac{dN}{dt} = (\alpha_N - \beta_N N) \cdot N - \gamma_{NA} N$$

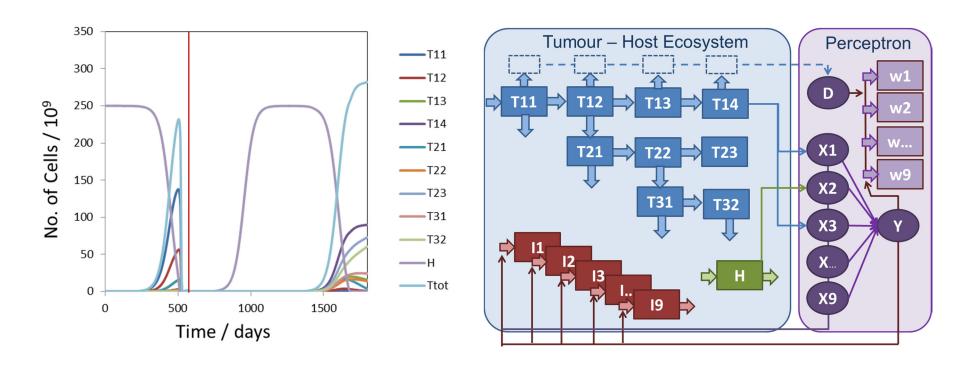
$$\frac{dA}{dt} = \gamma_{NA}N + (\alpha_A - \beta_A A) \cdot A - \gamma_{AC}A$$

$$\frac{dC}{dt} = \gamma_{AC}A + \alpha_C C$$

Tumour – Host –Immune Ecosystems

Tumours are fast-evolving ecosystems

- → Interactions (competition, commensalism and synergism) with cellular environment are essential for disease progression!
- → Spatial information processing seems also to influence immune response



Scheidegger et al. (2022), In: Schneider J.J., Weyland M.S., Flumini D., Füchslin R.M. (eds), Artificial Life and Evolutionary Computation. WIVACE 2021. Communications in Computer and Information Science, Springer, Cham, https://doi.org/10.1007/978-3-031-23929-8 Scheidegger et al. (2021), Cancers 2021, 13, 5764. DOI: 10.3390/cancers13225764 Scheidegger et a. (2023), The MIT Press Journals: Alife 2023, article in press.

Epidemiological Models

$$\frac{dS}{dt} = -\alpha SI$$

$$\frac{dI}{dt} = \alpha SI - \beta I$$

$$\frac{dR}{dt} = \beta I$$

Kermack – McKendric (SIR) model (1927):

- S: number of susceptible individuals
- *I*: number of infected individuals
- R: number of recovered (immune) individuals
- S + I + R = N

Epidemiological Models

More complex nCoV model based on SIR approach:

$$\frac{dS}{dt} = -\alpha SI$$

$$\frac{dI}{dt} = \alpha SI - \beta I$$

$$\frac{dR}{dt} = \beta I$$

$$\frac{dS}{dt} = -\sum_{n} k_{an} SI_{a,n} - k_{v} S + k_{idv} V + \sum_{n} k_{id} R_{n}$$

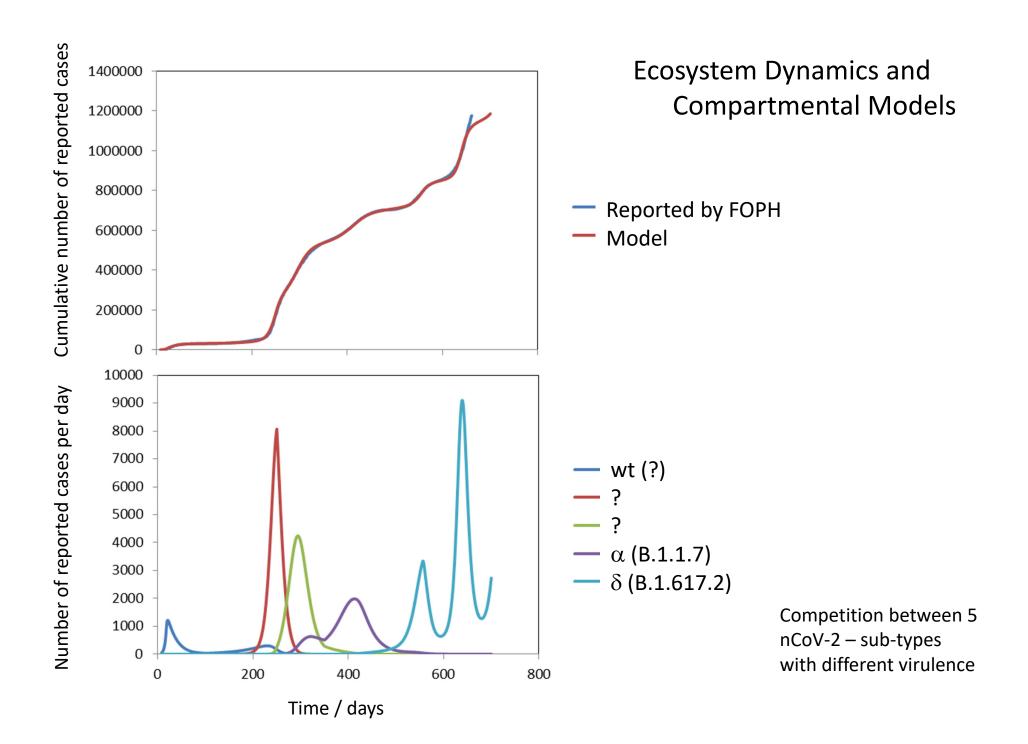
$$\frac{dI_{a,n}}{dt} = (k_{an}S - k_{rn} - k_{sn}) \cdot I_{a,n}$$

$$\frac{dI_{s,n}}{dt} = k_{sn}I_{a,n} - (k_{en} + k_{dn}) \cdot I_{sn}$$

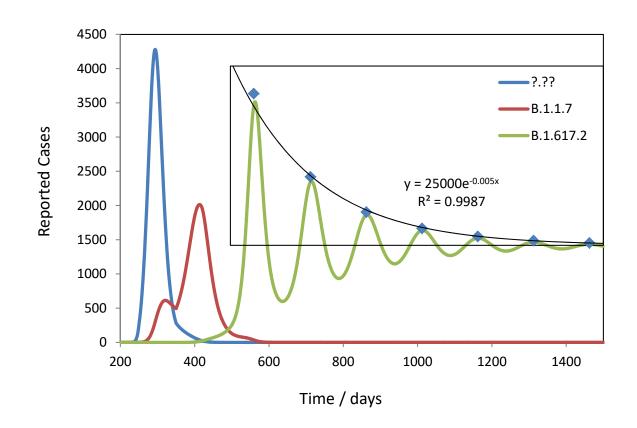
$$\frac{dR_n}{dt} = k_{rn}I_{a,n} + k_{en}I_{sn} - \sum_n k_{id}R_n$$

$$\frac{dD}{dt} = \sum_{n} k_{dn} I_{sn}$$

$$\frac{dV}{dt} = +k_{v}S - k_{idv}V$$

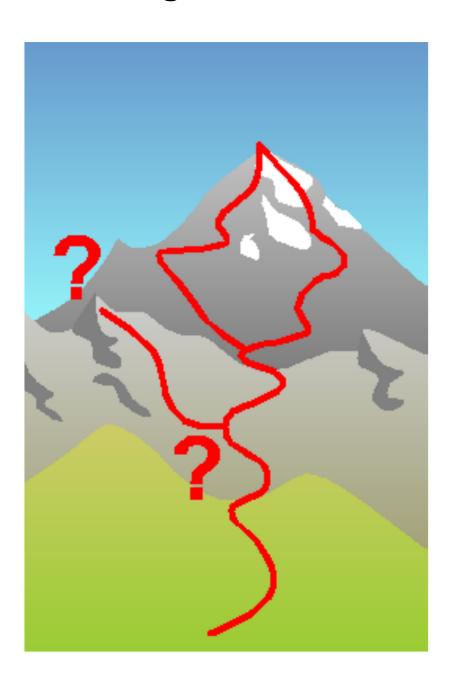


Modelling SARS CoV-2 Pandemics



Oscillations in a system with waning immunity encodes information about half-life of immunity.

Comming Soon



Application of dynamic models

- Biokinetic modelling and PET data analysis (Day 2)
- Radiobiological models (Day 3)