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CONTENT MBDA

Model-based data analysis for clinical
application — Modelling and Biological
Systems:

Day 1

0920-1100: Modelling and Biological Systems
1320-1400: Using Graphical Model Editors
1400-1450: Using Python for Model Fitting

Day 2
1110-1200: Biokinetic / Biodynamic Modelling

(= Lab2: Model-based Data Analysis of PET
Images)

Day3
0900-1100: Radiobiological Models



Learning Objectives

Students are able

e To be aware of the different
purposes of modelling

e to explain the assumption for
compartmental models

e to model compartmental biological
systems and explore them by using
computer simulations

e to use models for biological data
analysis

e To use modelling and computer
simulation as in silico lab tools




About Systems, Data
& Models



Systems Biophysics — Systems Medicine — a Landscape

Theory: Math. Models:
Concepts: Physiology, Events, MC
lliness, disease Pathophysiology Statistic mechanical
Body as mechanism Systems theory of Compartmental
Compartments - Cancer (neuronal) networks
Life as process - Immune system Spatio-tempral
emergence -

Data
Experiments
: Experiments | | In silico
Experiments | | |\ i
. clinical trials In vivo

Clinical

observations




Biomedical Systems ?

Systems Science and Medicine...

Do we have the adequate
concepts to understand
disease and treatment?
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HISTOIRE ,VOUS VERREZ... | ¥
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e Usually, clinical trials
compare drug with placebo,
before and after, but do not
tell the story!

- e _ * Dynamics of involved
S M ey & .
vacances | Sl N R o processes (life!) are often not
LITTORAL S5 Moderbi Il . _ _
== B0 ‘ in the «field of view»

* How to catch the story ...




I
IEN !...RASCAR CAPAC: C
EL,

AINE - LE -FEU-DU-C

E

MON DIEUT.LA MOMIE L. Jg e =l
= p L v -

f -
L)
L h (]
TR AW
A A1 I
£

& TENG T
I8 |ICE QUE C

f‘

-

o ot
AL
]

Y
% aﬁg
7%

Wk

I
L ¥ I"‘lm'_. e
Rter

Né‘ "EST-
ror RUE
:

A

bl ™
. !
L
o

N

33 5 {3 = ' :

AW i
UN BRACELET .. SAPRIS
TiIMAIS CEST CELVI QU
SE TROUVAIT AU BRAS DE
CETTE MOMIE ! CESTQU
R&%UX ..COMMENT CET OB
J
w

2L ARRIVE ICI <.




CONTENT

Catch the dynamics:

Model-based data analysis may reveal the
processes responsible for outcome

- Example 1: Analysis of time-resolved
biokinetic data (elimination)

- Example 2: Multi-process repair
dynamics

Mechanism vs. process: Biological systems

> Data are not only dynamic but have high
\1' plasticity! Mechanistic or dynamic view?
Model-based Comparison of ou.tcomes may generate
| Data Analysis knowledge, but - in case of complex

systems - not understanding!

Physiological Model




The Scales of Life

This is not a Teddy Bear —this is only a
picture!

e Interpretation of colored patches
requires semantics

e Semantics in living systems is an
emergent phenomenon

e Emergence is a result of dynamics in a
complex system!
- without dynamics — no life!

e Syntax of life is more related to the
molecular level

Fig.1. A sketch of a living system with some essential
“sub-systems”



Genotype — phenotype
interaction

System descriptors

Extra-cellular physiology

Tissue dynamics

KX’

Knowledge, Information

A ¥

Knowledge, Information

rA ¥

Phenotype
Function <-> Process

Environ-
mental
or

cytopl. RNA metabolic Syntax —

feedback olecular
nuclear mRNA level
Gene (DNA)

Criteria for decision
check-sum priciple?

System Caloric
configuration o
g < Quantities

S=f(m,m,...) U=f(m,m,,..)

Reaction kinetics

dm,
dt

= synth (mi’mk’“') - Rdecay (mi’mk"“)




Level of emergent population reaction

Data
Patient / Tumour
Ecosystem in silico

Data
Clinical Trials

Comparison of
Clinical data with

ecosystem model

Level of emergent cell reaction

Surival Data Surival Data
In vitro Comparison of In silico
data in vitro
with MHR model
Level of DNA fragment formation and repair
Comet Data Comet Data
In vitro Comparison of data in vitro In silico

with extended MHR model

Level of molecular (signalling) pathways

YH2AX / Immuno-
Histochemical Data
In vitro

YH2AX / Immuno-
Histochemical Data
In silico

Comparison of data in
vitro with kinetic models

of corresponding assay



Anatomy and Function

Anatomy is evolved — design follows function.

e Biolgical systems have remarkable structural and functional plasticity
and robustness (“anatomical homeostasis”, top-down control of
collective outcomes

e Bioelectric networks seems to be a way how evolution has expanded
computational boundaries of cells into organisms (re-
programmability: hardware vs. software!)

e Hypothesis (formulated by Michael Levin'): “multiscale autonomy of
goal-seeking subunits while bringing the risk of cancer (!) is the key to
adaptive function and evolvability”

ILevin M (2020): Key note lecture, Alife 2020 Conference



Current Paradigm of Anatomy

. Tissues/organs emerge from
- cell differentiation

I i e - cell proliferation

Normal Embryonic Development - cell migration

- apoptosis

A
=D \;K % — \Ff m under progressive unrolling of genome

Open Loop system:

N,

X &

GRNs * ¥

ke EfFecT‘or emergence > =
Proteins L

Fundamental difficulty: inverse problem

ILevin M (2020): Key note lecture, Alife 2020 Conference



Planarian Regeneration: restoring global order

Posterior
regenerate

Poslero blastema
Ante rior blastema

Anterior

Intestine regenerate —

Cells from same position make
radically different structures

ILevin M (2020): Key note lecture, Alife 2020 Conference



Closed Loop Pattern Homeostasis

Anatomical Error Detection and Control Loop

surveillance and adjustment of self-model
injury

g/
1

GRNs

Effector emergence
—>

Genes—» :
PrOte|nS of anatomy

Tissues/organs change
position, shape, gene expression
until the correct shape is re-established,
and then they stop! A homeostatic cycle for shape.

ILevin M (2020): Key note lecture, Alife 2020 Conference




Developmental Biology <—> Basal Cognition <—> Comp Sci

Neural "e’WorA_

+ Complex decision-making at all levels
of biology - the parts are unreliable
but smart

+ Cells and tissues compute during
morphogenesis and repair

» Bioelectric networks underlie pattern | :
memories and pattern homeostasis --

« Combination of bottom-up emergence
AND top-down representation,
reprogrammability

ILevin M (2020): Key note lecture, Alife 2020 Conference



Manipulating Bioelectric Networks in vivo
Tools w vel
. (no applied fields!)
(elch?rEicJallmstllloa%se)
a4 S5y) « Dominant negative
Connexin protein
; i * GJC drug blocker Syna'pjuc
Non-neural cell network .- Vs _ plasticity
* Cx mutant with altered
32 K+ gating or permeability
. ." Cl-
. - TS
» o \ ¥
. »
» y . @
» N e
.. . Ton channel
» ., . “.5 (seting Veen) ¢ Dominant ion channel over-
. - T l_@_l expression (depolarizing or
. I N \> hyperpolarizing, light-
Alexis Pietak : ...- gated, drug-gated)
= + Drug blocker of native Intrinsic
l i channel plasticity
. « Drug opener of native
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ILevin M (2020): Key note lecture, Alife 2020 Conference




Bioelectrically-Encoded Pattern Memory

normal anatomy

P1 WT Brightfield P1 CR Brightfield
Dy
! normal molecular
: histology
0821_HN

J\ ¥ 2l edited bioelectric

: , pattern

P1 WT DiBAC P1 CR DIBAC —_—

middle-third
regenerates:

ILevin M (2020): Key note lecture, Alife 2020 Conference

We can now directly
see the representation
of large-scale goal
states and re-write
those memories!

The Same Body can Store different
Electrical Pattern Memories

The hioelectric pattern doesn't indicate what the anatomy is now,



A Better Metaphor:

DNA encodes a versatile excitable medium with default symmetry-

breaking dynamics and memory
Anatomy is controlled by modular software

CIr Na*  Ca*
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genome
determines
cellular

hardware
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l‘_

ILevin M (2020): Key note lecture, Alife 2020 Conference

Vmem check while solving (simulation time 0.041 s)
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Biological systeMs as a Gearbox?

Biological systems are different!
Complex dynamics, emergence, plasticity, redundancy!



Advanced Modelling of Cell Differentiation

Zygote £S5 E6.5 E85

A4 \ Mesoderm
Inner cell \ i I o |
mass Trophoblast _ Gutles) |
~ endoderm { {[ ]
Endoderm
Primitive p
Ectoderm S 170 S——

Cell line with transcriptional profile x;
and cell fate probability P = P(x,t)

Fig.1. Differentiation pathways and cell fate (Alemany A,
https://doi.org/10.1051/epn/2020505)
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probability P by directed
diffusion (Fokker-Planck
Equation); F denotes a vector
with functions governing the
transcription (corresponding to
the transcriptome vector)
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——=A[DP]-V Rad

Fig.1. Differentiation pathways and cell
fate (Alemany A,

https://doi.org/10.1051/epn/2020505)



Catching the Real World in Models

semantic models

physical, chemical,
biological models

fit models,
descriptive models
for data
Advanced:
Machine Learning

Description of ODE'’s, delay ODE’s, PDE’s;
information dynamic state variables

Description of

: ODE’s, PDE’s, M(C, ...
physical processes

Linear-,
Fitting data non-linear regression
Cluster analysis polinomials, exp. Fncts etc.
Network trg Trained network




What We Can Learn form Models

semantic models

Understanding of

ODE’s, delay ODE’s, PDE’s;

_ , behaviour

dynamic state variables
physical, chemical, Understandig of
biological models dynamics, proof of

ODE’s, PDE’s, MC, ... th-eory by c.omparlson

with experimental data
fit models,
]cczloers;ralguve models | -
IRl ; Information about

Advanced: non-linear regression

: : , _ correlations
Machine Learning  polinomials, exp. Fncts etc.

Trained network



Aims of Modelling

- The way of modelling a biological system
:> [ - is dependent on the purpose:

0

e Models for treatment planning have
to be predictive (weather forecast)

e Models for model-based data analysis
must be comparable to the data

e Models for investigating dynamics in
biological systems must represent the

relevant aspects of the system

| e behaviour

—————————————————

= Fig.1. Mapping of the Multi-Hit-Repair (MHR) model
to Comet assay data (DNA damage)

_____



Perfusion Data

Thermal
Enhancement
Data

Patient Imaging
Data Prep.

Segmentation

Electomagnetic

Simulation Model

Thermal
Simulation Model

Radiation Dose
Model

Model-based
Data Analysis

Therapeutic
Enhancement
Model

Treatment
Planning

4

Optimisation

Model




Modelling Approaches and Techniques

— =ymn— fn+
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dt

Depending on the purpose, different
modelling approaches can be useful:

Compartmental models:
Mathematical description by ordinary
differential equations (ODE) or delay
differential equations (DDE);
simulation using finite difference
methods

Spatio-temporal models:
Mathematical description by partial
differential equations (PDE),
simulation using time-domain finite
difference (TD-FD) methods or finite
elements methods (FEM)



Modelling Approaches and Techniques

Non-differential equation-based methods:

e Cellular automaton
e Agent-based models
e Monte-Carlo (MC) simulations

MC Model, calculation and images by Patrik Eschle



Modelling and Computer Simulation

Does a model work correctly?

35 o

25 H

15 A

0.5 o

A e Verification: equilibrium levels, initial
rates, frequencies, dynamic behavior
under controlled conditions

e Calibration: use of observed data for
fitting

e Validation: use of observed data for

comparison with model prediction

e Certification: needed e.g. for medical
products

dt




Approaches to
Stock & Flow — and
Compartmental Modelling



Compartmental and ODE-based Models

In a first step, we start with simplistic
compartmental models to introduce
fundamental concepts of modelling.
Compartmental modelling can be applied
to:

e Populations and ecosystems

e Epidemiological problems

e Physiological processes

e Drug distribution (biokinetics)
e Therapy optimizations

j Fig.1. Mapping of a living system to a compartmental
model




- J

N=N(t); M =M(1); O=0()
n(t); c(t);...

J.=—k Vo, J =-KkAn
Iy =f(N,..5t); Sy, =h(N,...;t)

Compartments and Stock & Flow
- Models

A recipe:

e Topology of the system? Define
compartments and / or stocks

e (Quantities describing the system?
Define numbers of cells, densities,
amount of drugs, concentrations etc.

e These quantities are considered as
functions of time: To describe the
dynamics, we need the first derivative
in time (why?)

e To get the flows, describe the driving
forces leading to the (ex)change of
the aforementioned quantities.

e Formulate the flow balance



Population Models

Given the population size (number of
individuals, organisms) N = N(t), the
system can be described mathematically
by the first derivative with respect to

time t:
M(f):der e The temporal change in the system is
equal to the balance of birth —and
AN _ death rate
=N
dt
dN

— = birthrate — deathrate = ZRi



Population Models

Example: exponential growth. Even in

dN this case, solution can be found easily by
—=aN
dt

e Separation

d_N B ln‘N‘ e Integration
N
= I adt = at + const.
N(t)=N, -e*
N(E)zzzeaT2—)];:hl—2
N, o




Population Models

N
j]il]](?fs :J‘N_O.Sdt _ 2N0.5

= j adt = at + const.

N(t):(%mmj

Exponential growth is only possible as
long as nutrients (resources) are
unlimited. A model for planar growth
(cell cultures etc.) can be found by the
following assumptions:

e Nutrient limitation leads to growth
inhibition within the populated area

e only at the rim of the populated area,
growth is possible (new substrate)

e The circumference is proportional to
the square root of the area, therefore
the growth rate is proportional to the
square root of the population size.



Population Models: Model-based Data Analysis

3.5 -
; - A
25 -
S s
1 -
0.5 -
0 : . . .
0 1 2 3 4 ,
N(t) = Noem Data Analysis N(?) = (%at T \/Ej

dN v dN _ v

—=aN L — =
A Fitting Model At




Population Models

an _ aN — BN’
dt

aN, —BN; =0

eq

> | R

Many observations of growth in
biological systems indicate a logistic
growth:

e with an exponential growth
e Inhibition proportional to N?

e Equilibrium level is given by the ratio
of growth- and inhibition constants



Population Models

dN

dt

J

dN

aN — N?

=aN — N’

[ a

N(D)
1.00

0.75

0.50

0.25

>
>

N() =

a

Solution can be found by partial fraction
separation, expansion / decomposition
and integration:

—(f-al/Ny)-e“ +p

Zeitt/ s




Combined Population Models

de Growth inhibition may be introduced by

E = inflow — outflow nutrient limitation:

e Modelling of nutrients (concentration
c) is similar to our general modelling
approach (balance of flows)

dc e The coupling of the population model

_:kl.(cf_c)_kzN p g. p p- . .

dt re and the nutrient model is possible via
nutrient-dependent growth constant

d_N =a(c)-N and population-size dependent

dt consumption rate

ﬂ“l ﬂ“l
a(c) = Y -
—(A, A a ) e+ A, 24,




Combined Population Models

A A
a(c) = — —
—(4, =Aa’ ) e+ A, 24,
A
4 |
w2
k=
~ 0
S
S
D
4 |-
| .
0.0 0.5 1.0

c/ AU



c/ AU

Nutrient depletion

0.84]
| TN
0.0 1.0 2.0
t/U
A
1600 |-

Growth inhibition

A\ 4

0.0 1.0 2.0
t/U



Combined Population Models

Combined growth — nutrient models can replicate the
logistic growth, but depending on the parameter
values, the model exhibit more versatile behavior:

e Models should be as complex as required!

A
3000 c
b
= 4000 d
| I
0.0 1.0 2.0

t/U



Some Examples ...



Modelling Transcription and Translation
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Modelling Transcription and Translation




Population Models

Medical applications of population

| models:
|
I} e Epidemiology
’ | e Tumour growth and anti-cancer
| treatment
| e Immunology
O ) e Ecosystem dynamics and system

| medicine

. Fig.1. Cancerogenesis in host tissue (green cells)



Tumour Translation / Transformation and Progression

Adenoma model for colo-rectal cancer

e N: Host tissue (epithelial cells)

A: adenoma cells

e (:carcinoma cells
dN
E:(azv -ByN)-N—-y,,N

dA

EZj/NAN_i_(aA _/BAA)'A_7/ACA

E:]/ACA-FCZCC



Tumour — Host =Immune Ecosystems

Tumours are fast-evolving ecosystems

- Interactions (competition, commensalism and synergism) with cellular environment are
essential for disease progression!

- Spatial information processing seems also to influence immune response

350
o /~ Tumour — Host Ecosystem  \ /~ Perceptron
300 1 —T12 =
B —T13 o
% 250
— —T14
S~
o 207 —T21
K] —_—T22
O 150 -
‘*6 e 12 3
S 100 - ——T31
= T32
50 - H
0 - : Ttot
0 500 1000 \ / \ /
Time / days

Scheidegger et al. (2022), In: Schneider J.J., Weyland M.S., Flumini D., Flichslin R.M. (eds), Artificial Life and Evolutionary Computation.
WIVACE 2021. Communications in Computer and Information Science, Springer, Cham, https://doi.org/10.1007/978-3-031-23929-8
Scheidegger et al. (2021), Cancers 2021, 13, 5764. DOI: 10.3390/cancers13225764

Scheidegger et a. (2023), The MIT Press Journals: Alife 2023, article in press.




Epidemiological Models

Kermack — McKendric (SIR) model (1927):

e S:number of susceptible individuals

d_S = —aSI e [: number of infected individuals

dt e R:number of recovered (immune)
individuals

dl e S+/+R=N

—=aSl - 1

dt

dR



Epidemiological Models

More complex nCoV ? =—> k,SI,, —kS+k,V+> kR,
model based on SIR t n .
approach:

dl
’ :(kanS_krn_ksn)']an
dt ’

Do k1~ k)1
B — _ + .
dt snea,n en dn sn

dR,
dt

=k I +k I —Zkian

rn-—a,n en  sn

d_D = Z kdnlsn
dR dt =

d_V = +ka _kide
dt



Cumulative number of reported cases

Number of reported cases per day
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Ecosystem Dynamics and
Compartmental Models

— Reported by FOPH
— Model

— wt (?)

—_ 7

— 7

— o (B.1.1.7)

— 0 (B.1.617.2)
Competition between 5
nCoV-2 — sub-types
with different virulence



Modelling SARS CoV-2 Pandemics

4500

4000 - “

3500 A

— 0?7
—pB.1.1.7

3000 - B.1.617.2

2500 -
y = 250008-0.005x

R?=0.9987

2000

Reported Cases

1500 -

1000 -

502;}/‘ N

200 400 600 800 1000 1200 1400

Time / days

Oscillations in a system with waning immunity encodes information about half-
life of immunity.



Comming Soon
Application of dynamic models

e Biokinetic modelling and PET data
analysis (Day 2)

e Radiobiological models (Day 3)




